主題
Search

外接圓


Circumcircle

外接圓是三角形的外 circumscribed 圓,即唯一穿過三角形三個頂點的。外接圓的圓心 O 稱為外心,圓的半徑 R 稱為外半徑。三角形的三條垂直平分線 M_AM_BM_C 交於點 O (Casey 1888, p. 9) (Durell 1928)。斯坦納點 S塔裡點 T 位於外接圓上。

多邊形的外接圓是 solid 的外接球體的二維情況。

外接圓可以使用三線座標指定為

 abetagamma+bgammaalpha+calphabeta=0
(1)

(Kimberling 1998, pp. 39 和 219)。擴充套件 Kimberling (1998, p. 228) 的列表,外接圓穿過 Kimberling 中心 X_i,其中 i=74, 98 (塔裡點), 99 (斯坦納點), 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110 (的焦點Kiepert 拋物線), 111 (Parry 點), 112, 476 (Tixier 點), 477, 675, 681, 689, 691, 697, 699, 701, 703, 705, 707, 709, 711, 713, 715, 717, 719, 721, 723, 725, 727, 729, 731, 733, 735, 737, 739, 741, 743, 745, 747, 753, 755, 759, 761, 767, 769, 773, 777, 779, 781, 783, 785, 787, 789, 791, 793, 795, 797, 803, 805, 807, 809, 813, 815, 817, 819, 825, 827, 831, 833, 835, 839, 840, 841, 842, 843, 898, 901, 907, 915, 917, 919, 925, 927, 929, 930, 931, 932, 933, 934, 935, 953, 972, 1113, 1114, 1141 (Gibert 點), 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1379, 1380, 1381, 1382, 1477, 2222, 2249, 2291, 2365, 2366, 2367, 2368, 2369, 2370, 2371, 2372, 2373, 2374, 2375, 2376, 2377, 2378, 2379, 2380, 2381, 2382, 2383, 2384, 2687, 2688, 2689, 2690, 2691, 2692, 2693, 2694, 2695, 2696, 2697, 2698, 2699, 2700, 2701, 2702, 2703, 2704, 2705, 2706, 2707, 2708, 2709, 2710, 2711, 2712, 2713, 2714, 2715, 2716, 2717, 2718, 2719, 2720, 2721, 2722, 2723, 2724, 2725, 2726, 2727, 2728, 2729, 2730, 2731, 2732, 2733, 2734, 2735, 2736, 2737, 2738, 2739, 2740, 2741, 2742, 2743, 2744, 2745, 2746, 2747, 2748, 2749, 2750, 2751, 2752, 2753, 2754, 2755, 2756, 2757, 2758, 2759, 2760, 2761, 2762, 2763, 2764, 2765, 2766, 2767, 2768, 2769, 2770, 2855, 2856, 2857, 2858, 2859, 2860, 2861, 2862, 2863, 2864, 2865, 2866, 2867 和 2868。

它與 Parry 圓Stevanović 圓正交

外接圓的極三角形切線三角形

外接圓是的反補 九點圓

SimsonLine
CircumcircleOrthoLine

當在外接圓上取任意點 P 時,則從 P三角形邊(或其延長線)的垂足 P_1P_2P_3 共線於一條稱為西姆森線的直線上。此外,對於外接圓上的任意點 P,關於三角形邊 BCACAB 的反射點 P_AP_BP_C 共線,不僅彼此共線,而且與垂心 H 共線 (Honsberger 1995, pp. 44-47)。

三角形外接圓在頂點處的切線與對邊反平行垂足三角形的邊與外接圓在頂點處的切線平行,並且外接圓在頂點處的半徑垂直於所有與對邊反平行的直線 (Johnson 1929, pp. 172-173)。

Pedoe (1995, pp. xii-xiii) 給出了外接圓的幾何作圖方法。頂點為 (x_i,y_i)i=1, 2, 3 的三角形的外接圓方程為

 |x^2+y^2 x y 1; x_1^2+y_1^2 x_1 y_1 1; x_2^2+y_2^2 x_2 y_2 1; x_3^2+y_3^2 x_3 y_3 1|=0.
(2)

展開行列式

 a(x^2+y^2)+b_xx+b_yy+c=0,
(3)

其中

 a=|x_1 y_1 1; x_2 y_2 1; x_3 y_3 1|,
(4)

b_x 是從矩陣獲得的行列式

 D=[x_1^2+y_1^2 x_1 y_1 1; x_2^2+y_2^2 x_2 y_2 1; x_3^2+y_3^2 x_3 y_3 1]
(5)

透過丟棄 x_i 列(並取負號)獲得,b_y 類似(這次取正號),

b_x=-|x_1^2+y_1^2 y_1 1; x_2^2+y_2^2 y_2 1; x_3^2+y_3^2 y_3 1|
(6)
b_y=|x_1^2+y_1^2 x_1 1; x_2^2+y_2^2 x_2 1; x_3^2+y_3^2 x_3 1|,
(7)

c 由下式給出

 c=-|x_1^2+y_1^2 x_1 y_1; x_2^2+y_2^2 x_2 y_2; x_3^2+y_3^2 x_3 y_3|.
(8)

配方得到

 a(x+(b_x)/(2a))^2+a(y+(b_y)/(2a))^2-(b_x^2)/(4a)-(b_y^2)/(4a)+c=0
(9)

這是一個形式為

 (x-x_0)^2+(y-y_0)^2=r^2,
(10)

具有外心

x_0=-(b_x)/(2a)
(11)
y_0=-(b_y)/(2a)
(12)

外半徑

 r=(sqrt(b_x^2+b_y^2-4ac))/(2|a|).
(13)

精確三線座標 (alpha,beta,gamma) 中,穿過三個非共線點(其精確三線座標(alpha_1,beta_1,gamma_1)(alpha_2,beta_2,gamma_2)(alpha_3,beta_3,gamma_3))的圓的方程為

 |abetagamma+bgammaalpha+calphabeta alpha beta gamma; abeta_1gamma_1+bgamma_1alpha_1+calpha_1beta_1 alpha_1 beta_1 gamma_1; abeta_2gamma_2+bgamma_2alpha_2+calpha_2beta_2 alpha_2 beta_2 gamma_2; abeta_3gamma_3+bgamma_3alpha_3+calpha_3beta_3 alpha_3 beta_3 gamma_3|=0
(14)

(Kimberling 1998, p. 222)。

如果邊長為 abc、 ... 且標準三線方程為 alpha=0beta=0gamma=0、 ... 的多邊形有外接圓,則對於圓上的任何點,

 a/alpha+b/beta+c/gamma+...=0
(15)

(Casey 1878, 1893)。

下表總結了一些已命名三角形的已命名外接圓。

三角形外接圓
反補三角形反補圓
circum-medial triangle外接圓
circumnormal triangle外接圓
circum-orthic triangle外接圓
circumcircle mid-arc triangle外接圓
接觸三角形內切圓
D-三角形orthocentroidal circle
Euler-Gergonne-Soddy triangleEuler-Gergonne-Soddy circle
尤拉三角形九點圓
外心三角形Bevan 圓
extangents triangleextangents circle
外切三角形Mandart 圓
Feuerbach 三角形九點圓
first Brocard triangleBrocard 圓
first Morley triangleMorley's 圓
first Neuberg trianglefirst Neuberg 圓
Fuhrmann 三角形Fuhrmann 圓
half-altitude trianglehalf-altitude circle
hexyl trianglehexyl circle
內心三角形incentral circle
inner Napoleon triangleinner Napoleon circle
inner Vecten triangleinner Vecten circle
intangents triangleintangents circle
Lemoine trianglethird Lemoine circle
Lucas central triangleLucas central circle
Lucas inner triangleLucas inner triangle
Lucas tangents triangleLucas circles radical circle
medial triangle九點圓
mid-arc triangle內切圓
mixtilinear trianglemixtilinear circle
垂足三角形九點圓
outer Napoleon triangleouter Napoleon circle
outer Vecten triangleouter Vecten circle
reference triangle外接圓
反射三角形反射圓
second Brocard triangleBrocard 圓
second Neuberg trianglesecond Neuberg circle
Stammler triangleStammler circle
Steiner trianglesecond Steiner circle
symmedial trianglesymmedial circle
tangential mid-arc triangletangential mid-arc circle
切線三角形切線圓
Yff central triangleYff central circle
Yff contact triangleYff contact circle
Yiu triangleYiu Circle

另請參閱

切維安圓, , 外心, 外半徑, 外接球, 外包圓, 旁切圓, 內切圓, 最小外包圓, Parry 點, 樞軸定理, Purser 定理, 西姆森線, 斯坦納點, 塔裡點

使用 探索

參考文獻

Casey, J. "On the Equations of Circles (Second Memoir)." Trans. Roy. Irish Acad. 26, 527-610, 1878.Casey, J. A Sequel to the First Six Books of the Elements of Euclid, Containing an Easy Introduction to Modern Geometry with Numerous Examples, 5th ed., rev. enl. Dublin: Hodges, Figgis, & Co., 1888.Casey, J. A Treatise on the Analytical Geometry of the Point, Line, Circle, and Conic Sections, Containing an Account of Its Most Recent Extensions, with Numerous Examples, 2nd ed., rev. enl. Dublin: Hodges, Figgis, & Co., pp. 128-129, 1893.Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. Washington, DC: Math. Assoc. Amer., p. 7, 1967.Durell, C. V. Modern Geometry: The Straight Line and Circle. London: Macmillan, pp. 19-20, 1928.Honsberger, R. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math. Assoc. Amer., 1995.Johnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, 1929.Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129, 1-295, 1998.Lachlan, R. "The Circumcircle." §118-122 in An Elementary Treatise on Modern Pure Geometry. London: Macmillian, pp. 66-70, 1893.Pedoe, D. Circles: A Mathematical View, rev. ed. Washington, DC: Math. Assoc. Amer., 1995.

在 中被引用

外接圓

引用為

Weisstein, Eric W. "外接圓。" 來自 Web 資源。 https://mathworld.tw/Circumcircle.html

主題分類