主題
Search

Pi


CirclePi

常數 pi,用 pi 表示,是一個 實數,定義為 周長 C 與其 直徑 d=2r 的比率,

pi=C/d
(1)
=C/(2r)
(2)

pi 的十進位制展開式為

 pi=3.141592653589793238462643383279502884197...
(3)

(OEIS A000796)。Pi 的數字 有許多有趣的性質,儘管對其解析性質知之甚少。然而,spigot 演算法(Rabinowitz 和 Wagon 1995;Arndt 和 Haenel 2001;Borwein 和 Bailey 2003,第 140-141 頁)和 數字提取演算法BBP 公式)是 pi 已知的。

Castellanos (1988ab) 簡要介紹了 pi 的 符號 歷史。pi 有時被稱為阿基米德常數或魯道夫常數,以紀念荷蘭 pi 計算器魯道夫·範·科伊倫 (Ludolph van Ceulen) (1539-1610)。符號 pi 最早由威爾士數學家威廉·瓊斯 (William Jones) 於 1706 年使用,隨後被尤拉採用。在《圓的測量》中,阿基米德(公元前 225 年左右)透過在 內接外切 6·2^n-邊形,使用 阿基米德演算法,獲得了第一個嚴格的近似值。使用 n=4(96 邊形),阿基米德得到

 3+(10)/(71)<pi<3+1/7
(4)

(Wells 1986,第 49 頁;Shanks 1993,第 140 頁;Borwein等人 2004,第 1-3 頁)。

已知 pi無理數 (Lambert 1761; Legendre 1794; Hermite 1873; Nagell 1951; Niven 1956; Struik 1969; Königsberger 1990; Schröder 1993; Stevens 1999; Borwein 和 Bailey 2003, pp. 139-140)。1794 年,Legendre 也證明了 pi^2無理數 (Wells 1986, p. 76)。pi 也是 超越數 (Lindemann 1882)。Lindemann 對 pi 超越性的證明的直接結果也證明了被稱為 化圓為方古代幾何問題 是不可能的。Klein (1955) 給出了 Lindemann 證明的簡化但仍然困難的版本。

還已知 pi 不是 劉維爾數 (Mahler 1953),但尚不清楚 pi 是否對任何基數都是正規的 (Stoneham 1970)。下表總結了計算 pi無理測度 的上限的進展。指數很可能可以減少到 2+epsilon,其中 epsilon 是一個無窮小的數 (Borwein et al. 1989)。

上限參考文獻
20Mahler (1953), Le Lionnais (1983, p. 50)
14.65Chudnovsky 和 Chudnovsky (1984)
8.0161畑 (Hata) (1992)
7.606308Salikhov (2008)
7.10320534Zeilberger 和 Zudilin (2020)

尚不清楚 pi+epi/elnpi 是否為 無理數。然而,已知它們不能滿足任何次數 <=8多項式 方程,其中 係數 是平均大小為 10^9整數 (Bailey 1988ab, Borwein et al. 1989)。

J. H. Conway 已經證明,存在一個少於 40 個 分數 F_1F_2、... 的序列,其特性是,如果您從 2^n 開始,並重復乘以第一個 F_i,直到得到整數結果,直到出現 2 的 (例如 2^k),則 kpi 的第 n 位十進位制數字。

pi 除了 球體 之外,還在數學中各種意想不到的地方出現。例如,它出現在 正態分佈 的歸一化中,素數 的分佈中,構造非常接近 整數 的數字(拉馬努金常數),以及針掉落在 平行 線集上 相交 一條線的機率(蒲豐投針問題)。Pi 也出現在蜿蜒河流中源頭和河口之間實際長度與直線距離的平均比率中 (Stølum 1996, Singh 1997)。

《聖經》包含兩處參考文獻(列王紀上 7:23 和歷代志下 4:2),其中 pi 的值為 3 (Wells 1986, p. 48)。但是,應該提到的是,這兩個例子都指的是從物理測量中獲得的值,因此,可能完全在實驗不確定性的範圍內。《列王紀上》7:23 記載:“他鑄一個銅海,樣式是圓的,高五肘,直徑十肘,圍三十肘。” 這意味著 pi=C/d=30/10=3。巴比倫人給出的 pi 估計值為 3+1/8=3.125,而埃及人在萊因德紙草書中給出的 2^8/3^4=3.1605...,在其他地方則為 22/7。然而,中國幾何學家做得最好,嚴格推匯出 pi 到小數點後 6 位。

pi 出現在阿爾弗雷德·希區柯克執導的平淡乏味且演技拙劣的 1966 年電影《衝破鐵幕》中,包括一個特別奇怪但令人難忘的場景,保羅·紐曼(飾演邁克爾·阿姆斯特朗教授)在農舍門口用腳在泥土中畫了一個 pi 符號。在這部電影中,符號 pi 是一個東德地下網路的通行標誌,該網路將逃亡者偷運到西方。

1998 年的電影π 是一部黑暗、怪異且節奏極快的電影,講述了一位數學家在尋找股市模式時逐漸精神錯亂的故事。一個哈西德教神秘教派和一個華爾街公司都瞭解了他的調查,並試圖引誘他。不幸的是,這部電影基本上與真實的數學無關。314159,pi 的前六位數字是卡爾·薩根的小說接觸中艾莉辦公室保險箱的密碼。

2005 年 9 月 15 日,谷歌發行了 14159265 股 A 類股票,這與小數點後 pi 的前八位數字相同 (Markoff 2005)。

圓柱體 體積公式引出了一個數學笑話:“一個厚度為 a,半徑為 z 的披薩的體積是多少?” 答案:pi z z a。這個結果有時被稱為第二個 披薩定理

2005 年專輯 Aerial 收錄了一首名為“Pi”的歌曲,其中 pi 的前幾位數字與歌詞交錯(不幸的是不正確)。

關於 pi 的 公式 非常多,從簡單的到非常複雜的都有。

拉馬努金 (Ramanujan) (1913-1914) 和 Olds (1963) 給出了 355/113 的幾何構造。Gardner (1966, pp. 92-93) 給出了 3+16/113=3.1415929... 的幾何構造。Dixon (1991) 給出了 6/5(1+phi)=3.141640...sqrt(4+[3-tan(30 degrees)]^2)=3.141533... 的構造。pi 近似值的構造是 化圓為方 的近似值(這本身是不可能的)。


另請參閱

幾乎是整數, 阿基米德演算法, BBP 公式, Brent-Salamin 公式, 布豐-拉普拉斯投針問題, 蒲豐投針問題, , 周長, 直徑, 狄利克雷 Beta 函式, 狄利克雷 Eta 函式, 狄利克雷 Lambda 函式, e, 尤拉-馬歇羅尼常數, 麥克勞林級數, 馬青公式, 類馬青公式, 正態分佈, Pi 近似值, Pi 連分數, Pi 數字, Pi 公式, Pi 文字遊戲, 半徑, 互質, 黎曼 Zeta 函式, 球體, 三角學 在 課堂中探索此主題

相關的 Wolfram 站點

http://functions.wolfram.com/Constants/Pi/

使用 探索

參考文獻

Almkvist, G. and Berndt, B. "Gauss, Landen, Ramanujan, and Arithmetic-Geometric Mean, Ellipses, pi, and the Ladies Diary." Amer. Math. Monthly 95, 585-608, 1988.Almkvist, G. "Many Correct Digits of pi, Revisited." Amer. Math. Monthly 104, 351-353, 1997.Arndt, J. "Cryptic Pi Related Formulas." http://www.jjj.de/hfloat/pise.dvi.Arndt, J. and Haenel, C. Pi: Algorithmen, Computer, Arithmetik. Berlin: Springer-Verlag, 1998.Arndt, J. and Haenel, C. Pi--Unleashed, 2nd ed. Berlin: Springer-Verlag, 2001.Assmus, E. F. "Pi." Amer. Math. Monthly 92, 213-214, 1985.Bailey, D. H. "Numerical Results on the Transcendence of Constants Involving pi, e, and Euler's Constant." Math. Comput. 50, 275-281, 1988a.Bailey, D. H. "The Computation of pi to 29360000 Decimal Digit using Borwein's' Quartically Convergent Algorithm." Math. Comput. 50, 283-296, 1988b.Bailey, D. H.; Borwein, P. B.; and Plouffe, S. "On the Rapid Computation of Various Polylogarithmic Constants." Math. Comput. 66, 903-913, 1997.Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 55 and 274, 1987. Beck, G. and Trott, M. "Calculating Pi from Antiquity to Modern Times." http://library.wolfram.com/infocenter/Demos/107/.Beckmann, P. A History of Pi, 3rd ed. New York: Dorset Press, 1989.Beeler, M. et al. Item 140 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 69, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/pi.html#item140.Berggren, L.; Borwein, J.; and Borwein, P. Pi: A Source Book. New York: Springer-Verlag, 1997.Bellard, F. "Fabrice Bellard's Pi Page." http://www-stud.enst.fr/~bellard/pi/.Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, 1994.Blatner, D. The Joy of Pi. New York: Walker, 1997.Blatner, D. "The Joy of Pi." http://www.joyofpi.com/.Borwein, J. M. "Ramanujan Type Series." http://www.cecm.sfu.ca/organics/papers/borwein/paper/html/local/omlink9/html/node1.html.Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, 2004.Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987a.Borwein, J. M. and Borwein, P. B. "Ramanujan's Rational and Algebraic Series for 1/pi." Indian J. Math. 51, 147-160, 1987b.Borwein, J. M. and Borwein, P. B. "More Ramanujan-Type Series for 1/pi." In Ramanujan Revisited: Proceedings of the Centenary Conference, University of Illinois at Urbana-Champaign, June 1-5, 1987 (Ed. G. E. Andrews, B. C. Berndt, and R. A. Rankin). New York: Academic Press, pp. 359-374, 1988.Borwein, J. M. and Borwein, P. B. "Class Number Three Ramanujan Type Series for 1/pi." J. Comput. Appl. Math. 46, 281-290, 1993.Borwein, J. M.; Borwein, P. B.; and Bailey, D. H. "Ramanujan, Modular Equations, and Approximations to Pi, or How to Compute One Billion Digits of Pi." Amer. Math. Monthly 96, 201-219, 1989.Borwein, P. B. "Pi and Other Constants." http://www.cecm.sfu.ca/~pborwein/PISTUFF/Apistuff.html.Calvet, C. "First Communication. A) Secrets of Pi: Strange Things in a Mathematical Train." http://www.terravista.pt/guincho/1219/1a_index_uk.html.Castellanos, D. "The Ubiquitous Pi. Part I." Math. Mag. 61, 67-98, 1988a.Castellanos, D. "The Ubiquitous Pi. Part II." Math. Mag. 61, 148-163, 1988b.Chan, J. "As Easy as Pi." Math Horizons, pp. 18-19, Winter 1993.Choong, K. Y.; Daykin, D. E.; and Rathbone, C. R. "Rational Approximations to pi." Math. Comput. 25, 387-392, 1971.Chudnovsky, D. V. and Chudnovsky, G. V. Padé and Rational Approximations to Systems of Functions and Their Arithmetic Applications. Berlin: Springer-Verlag, 1984.Chudnovsky, D. V. and Chudnovsky, G. V. "Approximations and Complex Multiplication According to Ramanujan." In Ramanujan Revisited: Proceedings of the Centenary Conference, University of Illinois at Urbana-Champaign, June 1-5, 1987 (Ed. G. E. Andrews, B. C. Berndt, and R. A. Rankin). Boston, MA: Academic Press, pp. 375-472, 1987.Conway, J. H. and Guy, R. K. "The Number pi." In The Book of Numbers. New York: Springer-Verlag, pp. 237-239, 1996.David, Y. "On a Sequence Generated by a Sieving Process." Riveon Lematematika 11, 26-31, 1957.Dixon, R. "The Story of Pi (pi)." §4.3 in Mathographics. New York: Dover, pp. 44-49 and 98-101, 1991.Dunham, W. "A Gem from Isaac Newton." Ch. 7 in Journey through Genius: The Great Theorems of Mathematics. New York: Wiley, pp. 106-112 and 155-183, 1990.Exploratorium. "pi Page." http://www.exploratorium.edu/learning_studio/pi/.Finch, S. R. "Archimedes' Constant." §1.4 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 17-28, 2003.Flajolet, P. and Vardi, I. "Zeta Function Expansions of Classical Constants." Unpublished manuscript. 1996. http://algo.inria.fr/flajolet/Publications/landau.ps.Gardner, M. "Memorizing Numbers." Ch. 11 in The Scientific American Book of Mathematical Puzzles and Diversions. New York: Simon and Schuster, p. 103, 1959.Gardner, M. "The Transcendental Number Pi." Ch. 8 in Martin Gardner's New Mathematical Diversions from Scientific American. New York: Simon and Schuster, pp. 91-102, 1966.Gosper, R. W. Table of Simple Continued Fraction for pi and the Derived Decimal Approximation. Stanford, CA: Artificial Intelligence Laboratory, Stanford University, Oct. 1975. Reviewed in Math. Comput. 31, 1044, 1977.Gourdon, X. and Sebah, P. "The Constant pi." http://numbers.computation.free.fr/Constants/Pi/pi.html.Hardy, G. H. A Course of Pure Mathematics, 10th ed. Cambridge, England: Cambridge University Press, 1952.Hata, M. "Improvement in the Irrationality Measures of pi and pi^2." Proc. Japan. Acad. Ser. A Math. Sci. 68, 283-286, 1992.Havermann, H. "180000000 Terms of the Continued Fraction Expansion of Pi." http://odo.ca/~haha/j/seq/cfpi/.Hermite, C. "Sur quelques approximations algébriques." J. reine angew. Math. 76, 342-344, 1873. Reprinted in Oeuvres complètes, Tome III. Paris: Hermann, pp. 146-149, 1912.Hobson, E. W. Squaring the Circle. New York: Chelsea, 1988.Klein, F. Famous Problems. New York: Chelsea, 1955.Knopp, K. §32, 136, and 138 in Theory and Application of Infinite Series. New York: Dover, p. 238, 1990.Königsberger, K. Analysis 1. Berlin: Springer-Verlag, 1990.Laczkovich, M. "On Lambert's Proof of the Irrationality of pi." Amer. Math. Monthly 104, 439-443, 1997.Lambert, J. H. "Mémoire sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmiques." Mémoires de l'Academie des sciences de Berlin 17, 265-322, 1761.Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 22 and 50, 1983.Legendre, A. M. Eléments de géométrie. Paris, France: Didot, 1794.Lindemann, F. "Über die Zahl pi." Math. Ann. 20, 213-225, 1882.Lopez, A. "Indiana Bill Sets the Value of pi to 3." http://db.uwaterloo.ca/~alopez-o/math-faq/node45.html.MacTutor Archive. "Pi Through the Ages." http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Pi_through_the_ages.html.Mahler, K. "On the Approximation of pi." Nederl. Akad. Wetensch. Proc. Ser. A. 56/Indagationes Math. 15, 30-42, 1953.Markoff, J. "14,159,265 New Slices of Rich Technology." The New York Times. Aug. 19, 2005.MathPages. "Rounding Up to Pi." http://www.mathpages.com/home/kmath001.htm.Nagell, T. "Irrationality of the numbers e and pi." §13 in Introduction to Number Theory. New York: Wiley, pp. 38-40, 1951.Niven, I. "A Simple Proof that pi is Irrational." Bull. Amer. Math. Soc. 53, 509, 1947.Niven, I. M. Irrational Numbers. New York: Wiley, 1956.Ogilvy, C. S. "Pi and Pi-Makers." Ch. 10 in Excursions in Mathematics. New York: Dover, pp. 108-120, 1994.Olds, C. D. Continued Fractions. New York: Random House, pp. 59-60, 1963.Pappas, T. "Probability and pi." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 18-19, 1989.Peterson, I. Islands of Truth: A Mathematical Mystery Cruise. New York: W. H. Freeman, pp. 178-186, 1990.Pickover, C. A. Keys to Infinity. New York: Wiley, p. 62, 1995.Plouffe, S. "Table of Current Records for the Computation of Constants." http://pi.lacim.uqam.ca/eng/records_en.html.Update a linkPlouffe, S. "1 Billion Digits of Pi." http://pi.lacim.uqam.ca/eng/Plouffe, S. "A Few Approximations of Pi." http://pi.lacim.uqam.ca/eng/approximations_en.html.Plouffe, S. "PiHex: A Distributed Effort to Calculate Pi." http://www.cecm.sfu.ca/projects/pihex/.Plouffe, S. "The pi Page." http://www.cecm.sfu.ca/pi/.Plouffe, S. "Table of Computation of Pi from 2000 BC to Now." http://oldweb.cecm.sfu.ca/projects/ISC/Pihistory.html.Preston, R. "Mountains of Pi." New Yorker 68, 36-67, Mar. 2, 1992. http://www.lacim.uqam.ca/~plouffe/Chudnovsky.html.Project Mathematics. "The Story of Pi." Videotape. http://www.projectmathematics.com/storypi.htm.Rabinowitz, S. and Wagon, S. "A Spigot Algorithm for the Digits of pi." Amer. Math. Monthly 102, 195-203, 1995.Ramanujan, S. "Modular Equations and Approximations to pi." Quart. J. Pure. Appl. Math. 45, 350-372, 1913-1914.Rivera, C. "Problems & Puzzles: Puzzle 050-The Best Approximation to Pi with Primes." http://www.primepuzzles.net/puzzles/puzz_050.htm.Rudio, F. "Archimedes, Huygens, Lambert, Legendre." In Vier Abhandlungen über die Kreismessung. Leipzig, Germany, 1892.Sagan, C. Contact. Pocket Books, 1997.Salikhov, V. Kh. "On the Irrationality Measure of pi." Usp. Mat. Nauk 63, 163-164, 2008. English transl. in Russ. Math. Surv 63, 570-572, 2008.Schröder, E. M. "Zur Irrationalität von pi^2 und pi." Mitt. Math. Ges. Hamburg 13, 249, 1993.Shanks, D. "Dihedral Quartic Approximations and Series for pi." J. Number. Th. 14, 397-423, 1982.Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, 1993.Singh, S. Fermat's Enigma: The Epic Quest to Solve the World's Greatest Mathematical Problem. New York: Walker, pp. 17-18, 1997.Sloane, N. J. A. Sequences A000796/M2218, A001203/M2646, A001901, A002485/M3097, A002486/M4456, A006784, A007509/M2061, A025547, A032510, A032523 A033089, A033090, A036903, and A046126 in in "The On-Line Encyclopedia of Integer Sequences."Smith, D. E. "The History and Transcendence of pi." Ch. 9 in Monographs on Topics of Modern Mathematics Relevant to the Elementary Field (Ed. J. W. A. Young). New York: Dover, pp. 388-416, 1955.Stevens, J. "Zur Irrationalität von pi." Mitt. Math. Ges. Hamburg 18, 151-158, 1999.Stølum, H.-H. "River Meandering as a Self-Organization Process." Science 271, 1710-1713, 1996.Stoneham, R. "A General Arithmetic Construction of Transcendental Non-Liouville Normal Numbers from Rational Functions." Acta Arith. 16, 239-253, 1970.Stoschek, E. "Modul 33: Algames with Numbers" http://marvin.sn.schule.de/~inftreff/modul33/task33.htm.Struik, D. A Source Book in Mathematics, 1200-1800. Cambridge, MA: Harvard University Press, 1969.Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, p. 159, 1991.Viète, F. Uriorum de rebus mathematicis responsorum, liber VIII, 1593.Wagon, S. "Is pi Normal?" Math. Intel. 7, 65-67, 1985.Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, pp. 48-55 and 76, 1986.Whitcomb, C. "Notes on Pi (pi)." http://witcombe.sbc.edu/earthmysteries/EMPi.html.Woon, S. C. "Problem 1441." Math. Mag. 68, 72-73, 1995.Zeilberger, D. and Zudilin, W. "The Irrationality Measure of pi is at Most 7.103205334137...." 8 Jan 2020. https://arxiv.org/abs/1912.06345.

在 上被引用

Pi

請這樣引用

Weisstein, Eric W. "Pi." 出自 -- 資源。 https://mathworld.tw/Pi.html

主題分類