正規連分數是簡單連分數
其中
是一個 整數,而
是一個 正整數,對於
(Rockett and Szüsz 1992, p. 3)。
雖然正規連分數不是實數以整數序列形式表示的唯一可能方法(其他方法包括十進位制展開和Engel 展開),但它們是一種非常常見的表示方法,在數論中最為常見。Lochs 定理將正規連分數展開的效率與十進位制展開在表示實數方面的效率聯絡起來。
有限正規連分數表示在有限項後終止,因此對應於有理數。(Bach 和 Shallit (1996) 展示瞭如何根據有理數
的簡單連分數計算 Jacobi 符號。)另一方面,無限正規連分數表示唯一的無理數,並且每個無理數都有唯一的無限連分數。無限週期連分數具有許多特殊性質。
正規連分數也用於查詢不同週期事件之間的近似公度性。例如,希臘人用於曆法目的的默冬週期由 235 個朔望月組成,這非常接近 19 個太陽年,而 235/19 是朔望月(合朔)週期和太陽年週期(365.2425/29.53059)之比的第六個收斂項。正規連分數也可用於計算齒輪比,古希臘人也為此目的使用它們 (Guy 1990)。
透過給定的收斂項近似一個數的誤差,大約是第一個被忽略項的分母的平方的倒數。
拉格朗日連分數定理指出,二次無理數具有最終週期連分數。例如,畢達哥拉斯常數
的連分數為 [1; 2, 2, 2, 2, ...]。因此,如果懷疑數值常數表示未知的二次無理數,則有時可以推斷出其精確表示。
在某種意義上,正規連分數提供了一系列無理數的“最佳”估計。函式也可以寫成(簡單或廣義)連分數,從而提供一系列越來越好的有理逼近。連分數也被證明在證明數字的某些性質(例如 e 和
(pi))方面很有用。
從
開始正規連分數的索引,
 |
(4)
|
是
的整數部分,其中
是向下取整函式,
 |
(5)
|
是
的倒數的整數部分,
 |
(6)
|
是餘數倒數的整數部分,依此類推。根據遞推關係寫出餘數
給出簡潔公式
 |
(9)
|
量
稱為部分商,並且透過包含
項連分數獲得的量
稱為第
個收斂項。
例如,考慮計算
的連分數,由
給出。
| 項 | 值 | 部分商 | 收斂項 | 值 |
 |  | ![[3]](/images/equations/RegularContinuedFraction/Inline42.svg) | 3 | 3.00000 |
 |  | ![[3;7]](/images/equations/RegularContinuedFraction/Inline45.svg) |  | 3.14286 |
 |  | ![[3;7,15]](/images/equations/RegularContinuedFraction/Inline49.svg) |  | 3.14151 |
令
的簡單連分數為
。那麼極限值幾乎總是 Khinchin 常數
 |
(13)
|
(OEIS A002210)。
類似地,取第
個收斂項的分母
的第
次根,當
時幾乎總是給出 Lévy 常數
 |
(14)
|
(OEIS A086702)。
對數
可以透過定義
, ... 和正整數
, ... 來計算,使得
 |
(15)
|
 |
(16)
|
等等。然後
![log_(b_1)b_0=[n_1,n_2,n_3,...].](/images/equations/RegularContinuedFraction/NumberedEquation9.svg) |
(17)
|
既約分數
的幾何解釋包括一條穿過點陣的線,端點為
和
(Klein 1896, 1932; Steinhaus 1999, p. 40; Gardner 1984, pp. 210-211, Ball and Coxeter 1987, pp. 86-87; Davenport 1992)。這種解釋與最大公約數的類似解釋密切相關。它壓靠的樁
給出交替收斂項
,而其他收斂項則從它壓靠的以
為初始端的樁獲得。上面的圖是關於
的,其收斂項為 0, 1, 2/3, 3/4, 5/7, ....
連分數可以用來表示任何多項式方程的正根。連分數也可以用來求解線性丟番圖方程和 Pell 方程。
Gosper 發明了一種演算法,用於使用連分數執行解析加法、減法、乘法和除法。它需要跟蹤八個整數,這些整數在概念上排列在立方體的多面體頂點上。雖然這種演算法尚未印刷出版,但 Vuillemin (1987) 和 Liardet 和 Stambul (1998) 構建了類似的演算法。
Gosper 的演算法用於計算
的連分數的
的連分數,由 Gosper (1972)、Knuth (1998, 練習 4.5.3.15, pp. 360 和 601) 和 Fowler (1999) 描述。(在 Knuth 解的第 9 行中,
應替換為
。)Gosper (1972) 和 Knuth (1981) 也提到了二元情況
。
另請參閱
連分數,
收斂項,
廣義連分數,
Khinchin 常數,
拉格朗日連分數定理,
Lévy 常數,
Lochs 定理,
部分分母,
週期連分數,
簡單連分數
使用 探索
參考文獻
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 19, 1972.Acton, F. S. "Power Series, Continued Fractions, and Rational Approximations." Ch. 11 in Numerical Methods That Work, 2nd printing. Washington, DC: Math. Assoc. Amer., 1990.Adamchik, V. "Limits of Continued Fractions and Nested Radicals." Mathematica J. 2, 54-57, 1992.Bach, E. and Shallit, J. Algorithmic Number Theory, Vol. 1: Efficient Algorithms. Cambridge, MA: MIT Press, pp. 343-344, 1996.Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 54-57 and 86-87, 1987.Berndt, B. C. and Gesztesy, F. (Eds.). Continued Fractions: From Analytic Number Theory to Constructive Approximation, A Volume in Honor of L. J. Lange. Providence, RI: Amer. Math. Soc., 1999.Beskin, N. M. Fascinating Fractions. Moscow: Mir Publishers, 1980.Brezinski, C. History of Continued Fractions and Padé Approximants. New York: Springer-Verlag, 1980.Conway, J. H. and Guy, R. K. "Continued Fractions." In The Book of Numbers. New York: Springer-Verlag, pp. 176-179, 1996.Courant, R. and Robbins, H. "Continued Fractions. Diophantine Equations." §2.4 in Supplement to Ch. 1 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 49-51, 1996.Cuyt, A.; Petersen, A. B.; Verdonk, B.; Waadeland, H.; and Jones, W. B. Handbook of Continued Fractions for Special Functions. New York: Springer, 2008.Davenport, H. §IV.12 in The Higher Arithmetic: An Introduction to the Theory of Numbers, 6th ed. New York: Cambridge University Press, 1992.Dunne, E. and McConnell, M. "Pianos and Continued Fractions." Math. Mag. 72, 104-115, 1999.Euler, L. "On the Formulation of Continued Fractions." Delivered to the St. Petersburg Academy, Sept. 4, 1775. Published as Euler, L. "De formatione fractionum continuarum." Acta Academiae Scientarum Imperialis Petropolitinae 3, 3-29, 1782. Republished in Euler, L. Opera Omnia, Ser. 1: Opera mathematica, Vol. 15. Basel, Switzerland: Birkhäuser, 1992. http://arxiv.org/abs/math.HO/0508227.Euler, L. Introduction to Analysis of the Infinite, Book I. New York: Springer-Verlag, 1980.Fowler, D. H. The Mathematics of Plato's Academy: A New Reconstruction, 2nd ed. Oxford, England: Oxford University Press, 1999.Fowler, D. "Wallis and Number Columns by David Fowler." http://mathforum.org/epigone/math-history-list/sterbloirerm.Gardner, M. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, pp. 210-211, 1984.Gosper, R. W. "Continued fractions query." math-fun@cs.arizona.edu posting, Dec. 27, 1996.Gosper, R. W. Item 101a in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, pp. 37-39, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/cf.html#item101a.Gosper, R. W. Item 101b in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, pp. 39-44, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/cf.html#item101b.Graham, R. L.; Knuth, D. E.; and Patashnik, O. "Continuants." §6.7 in Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, pp. 301-309, 1994.Guy, R. K. "Continued Fractions" §F20 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 259, 1994.Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.Jacobson, M. J. Jr.; Lukes, R. F.; and Williams, H. C. "An Investigation of Bounds for the Regulator of Quadratic Fields." Experiment. Math. 4, 211-225, 1995.Khinchin, A. Ya. Continued Fractions. New York: Dover, 1997.Kimberling, C. "Continued Fractions." http://faculty.evansville.edu/ck6/integer/contfr.html.Klein, F. Ausgewählte Kapitel der Zahlentheorie I. Göttingen, Germany: n.p., 1896.Klein, F. Elementary Number Theory. New York, p. 44, 1932.Kline, M. Mathematical Thought from Ancient to Modern Times. Oxford, England: Oxford University Press, 1990.Knuth, D. E. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-Wesley, p. 316, 1998.Liardet, P. and Stambul, P. "Algebraic Computation with Continued Fractions." J. Number Th. 73, 92-121, 1998.Liberman, H. Simple Continued Fractions: An Elementary to Research Level Approach. SMD Stock Analysts, 2003.Lorentzen, L. and Waadeland, H. Continued Fractions with Applications. Amsterdam, Netherlands: North-Holland, 1992.Lorentzen, L. and Waadeland, H. Continued Fractions, 2nd ed., Vol. 1: Convergence Theory. Amsterdam, Netherlands/Paris: Atlantis Press/World Scientific, 2008.Moore, C. D. An Introduction to Continued Fractions. Washington, DC: National Council of Teachers of Mathematics, 1964.Olds, C. D. Continued Fractions. New York: Random House, 1963.Perron, O. Die Lehre von den Kettenbrüchen, 3. verb. und erweiterte Aufl. Stuttgart, Germany: Teubner, 1954-57.Pettofrezzo, A. J. and Bykrit, D. R. Elements of Number Theory. Englewood Cliffs, NJ: Prentice-Hall, 1970.Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Evaluation of Continued Fractions." §5.2 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 163-167, 1992.Riesel, H. "Continued Fractions." Appendix 8 in Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, pp. 327-342, 1994.Rockett, A. M. and Szüsz, P. Continued Fractions. New York: World Scientific, 1992.Rose, H. E. A Course in Number Theory, 2nd ed. Oxford, England: Oxford University Press, 1994.Rosen, K. H. Elementary Number Theory and Its Applications. New York: Addison-Wesley, 1980.Schur, I. "Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche." Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Klasse, pp. 302-321, 1917.Sloane, N. J. A. Sequences A000037/M0613, A013943, A052119, A111129, and A113011 in "The On-Line Encyclopedia of Integer Sequences."Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 39-42, 1999.Van Tuyl, A. L. "Continued Fractions." http://archives.math.utk.edu/articles/atuyl/confrac/.Vuillemin, J. "Exact Real Computer Arithmetic with Continued Fractions." INRIA Report 760. Le Chesnay, France: INRIA, Nov. 1987. http://www.inria.fr/RRRT/RR-0760.html.Wagon, S. "Continued Fractions." §8.5 in Mathematica in Action. New York: W. H. Freeman, pp. 263-271, 1991.Wall, H. S. Analytic Theory of Continued Fractions. New York: Chelsea, 1948.Wallis, J. Arithmetica Infinitorum. Oxford, England, 1656.Weisstein, E. W. "Books about Continued Fractions." http://www.ericweisstein.com/encyclopedias/books/ContinuedFractions.html.Williams, H. C. "A Numerical Investigation into the Length of the Period of the Continued Fraction Expansion of
." Math. Comput. 36, 593-601, 1981.
引用為
Weisstein, Eric W. “正規連分數。” 來自 —— 資源。 https://mathworld.tw/RegularContinuedFraction.html
主題分類