主題
Search

類數


對於任意 理想 I戴德金環 中,存在一個 理想 I_i 使得

 II_i=z,
(1)

其中 z 是一個 主理想,(即,秩為 1 的 理想)。此外,對於具有有限理想類群的 戴德金環,存在一個有限的理想列表 I_i 使得對於某些 I,此方程可以滿足。此列表的大小被稱為類數。

類數通常在 數域 的階的上下文中研究。如果此階是極大的,則它是 數域 的整數環,在這種情況下,類數等於 數域類群 的階;否則,它等於所討論的非極大階的 皮卡德群 的階。

數域整數環 的類數為 1 時,對應於給定 理想 的環具有唯一分解,並且在某種意義上,類數是該環中唯一分解失敗程度的度量。

給出 的精確類數的有限級數被稱為 類數公式。對於分圓整數的完整環以及分圓整數的任何子環,都已知 類數公式。找到類數是一個計算上困難的問題。

Wolfram 語言 函式NumberFieldClassNumber[Sqrt[d]] 給出 h(d) 的類數 d,其中 d基本判別式

判別式為 d<0 的二次域的階的類數 h(d) 等於判別式為 d 的約化二元二次型的數量。例如,數域 Q(-sqrt(23)) 的整數環 Z((1+sqrt(-23))/2) 的類數 h(-23) 等於 3,因為存在三個判別式為 -23 的約化二元二次型,即 <1,1,6><2,1,3><2,-1,3>。計算判別式為 d<0 的二次數域 Q(sqrt(d)) 的唯一階的類數 h(d) 的一種低效方法是計算判別式為 d 的約化二元二次型的數量。

一些相當複雜的數學表明,判別式為 d 的類數可以由 類數公式 給出

 h(d)={-1/(2lneta(d))sum_(r=1)^(d-1)(d/r)lnsin((pir)/d)   for d>0; -(w(d))/(2|d|)sum_(r=1)^(|d|-1)(d/r)r   for d<0,
(2)

其中 (d/r)克羅內克符號eta(d)基本單位w(d) 是使 二元二次型 不變的替換次數

 w(d)={6   for d=-3; 4   for d=-4; 2   otherwise,
(3)

並且總和是對 克羅內克符號 被定義的所有項求和 (Cohn 1980)。對於 d>0,類數也可以寫成

 eta^(2h(d))=product_(r=1)^(d-1)sin^(-(d/r))((pir)/d)
(4)

對於 d>0,其中 乘積 是對 克羅內克符號 被定義的項取乘積。

類數 h(d)狄利克雷 L 級數 相關,關係如下:

 h(d)=(L_d(1))/(kappa(d)),
(5)

其中 kappa(d)狄利克雷結構常數

Oesterlé (1985) 表明,類數 h(-d) 滿足 不等式

 h(-d)>1/(7000)product_(p|d)^*(1-(|_2sqrt(p)_|)/(p+1))lnd,
(6)

對於 -d<0,其中 |_x_|向下取整函式,乘積是對整除 d素數 求積,* 表示從乘積中省略了 d最大素因子。還已知,如果 d 與 5077 互質,則 (6) 中的分母 7000 可以替換為 55。

高斯類數問題 要求確定基本 二元二次型判別式 -d 的完整列表,使得對於給定的 n,類數由 h(-d)=n 給出。對於 n<=7奇數 n<=23,此問題已得到解決。高斯推測 虛二次域 的類數 h(-d) 隨著 二元二次型判別式 -d 中的 d 趨於無窮大而趨於無窮大,這一論斷現在被稱為 高斯類數猜想

對應於虛二次域的負判別式 d 為 3, 4, 7, 8, 11, 15, 19, 20, 23, 24, 31, 35, 39, 40, 43, ... (OEIS A003657),它們對應的類數 h(-d)=1 為 1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 3, 2, 4, 2, 1, ... (OEIS A006641)。

已知具有類數 1-5 和 奇數 7-23 的完整負判別式集。Buell (1977) 給出了 基本判別式 的最小和最大類數,其中 d<4000000,分為 偶數 判別式、判別式 1 (mod 8) 和判別式 5 (mod 8)。Arno et al. (1993) 給出了 奇數 k=5、7、9、...、23 的 h(-d)=k 的基本 d 值的完整列表。Wagner (1996) 給出了 k=5、6 和 7 的完整值列表。下表給出了對應於具有小類數 h(-d)虛二次域 Q(sqrt(-d(n))) 基本判別式 列表。在該表中,N 是具有給定類數 h(-d)-d基本 值的數量,其中“基本”意味著 -d 不可被任何 平方數 s^2 整除,使得 h(-d/s^2)<h(-d)。例如,儘管 h(-63)=2,但 -63 不是基本判別式,因為 63=3^2·7h(-63/3^2)=h(-7)=1<h(-63)偶數8<=h(-d)<=24 已由 Weisstein 計算得出。

下表列出了具有類數 h<=25基本判別式 d (Cohen 1993, pp. 229 和 514-515; Cox 1997, p. 271)。對於類數 18、20、22 和 24,搜尋分別在 50000、70000、90000 和 90000 處終止。據我所知,目前尚不知道這些情況的解析上限。

h(-d)N斯隆d
19A0146023, 4, 7, 8, 11, 19, 43, 67, 163
218A01460315, 20, 24, 35, 40, 51, 52, 88, 91, 115, 123, 148, 187, 232, 235, 267, 403, 427
316A00620323, 31, 59, 83, 107, 139, 211, 283, 307, 331, 379, 499, 547, 643, 883, 907
454A01365839, 55, 56, 68, 84, 120, 132, 136, 155, 168, 184, 195, 203, 219, 228, 259, 280, 291, 292, 312, 323, 328, 340, 355, 372, 388, 408, 435, 483, 520, 532, 555, 568, 595, 627, 667, 708, 715, 723, 760, 763, 772, 795, 955, 1003, 1012, 1027, 1227, 1243, 1387, 1411, 1435, 1507, 1555
525A04600247, 79, 103, 127, 131, 179, 227, 347, 443, 523, 571, 619, 683, 691, 739, 787, 947, 1051, 1123, 1723, 1747, 1867, 2203, 2347, 2683
651A04600387, 104, 116, 152, 212, 244, 247, 339, 411, 424, 436, 451, 472, 515, 628, 707, 771, 808, 835, 843, 856, 1048, 1059, 1099, 1108, 1147, 1192, 1203, 1219, 1267, 1315, 1347, 1363, 1432, 1563, 1588, 1603, 1843, 1915, 1963, 2227, 2283, 2443, 2515, 2563, 2787, 2923, 3235, 3427, 3523, 3763
731A04600471, 151, 223, 251, 463, 467, 487, 587, 811, 827, 859, 1163, 1171, 1483, 1523, 1627, 1787, 1987, 2011, 2083, 2179, 2251, 2467, 2707, 3019, 3067, 3187, 3907, 4603, 5107, 5923
8131A04600595, 111, 164, 183, 248, 260, 264, 276, 295, 299, 308, 371, 376, 395, 420, 452, 456, 548, 552, 564, 579, 580, 583, 616, 632, 651, 660, 712, 820, 840, 852, 868, 904, 915, 939, 952, 979, 987, 995, 1032, 1043, 1060, 1092, 1128, 1131, 1155, 1195, 1204, 1240, 1252, 1288, 1299, 1320, 1339, 1348, 1380, 1428, 1443, 1528, 1540, 1635, 1651, 1659, 1672, 1731, 1752, 1768, 1771, 1780, 1795, 1803, 1828, 1848, 1864, 1912, 1939, 1947, 1992, 1995, 2020, 2035, 2059, 2067, 2139, 2163, 2212, 2248, 2307, 2308, 2323, 2392, 2395, 2419, 2451, 2587, 2611, 2632, 2667, 2715, 2755, 2788, 2827, 2947, 2968, 2995, 3003, 3172, 3243, 3315, 3355, 3403, 3448, 3507, 3595, 3787, 3883, 3963, 4123, 4195, 4267, 4323, 4387, 4747, 4843, 4867, 5083, 5467, 5587, 5707, 5947, 6307
934A046006199, 367, 419, 491, 563, 823, 1087, 1187, 1291, 1423, 1579, 2003, 2803, 3163, 3259, 3307, 3547, 3643, 4027, 4243, 4363, 4483, 4723, 4987, 5443, 6043, 6427, 6763, 6883, 7723, 8563, 8803, 9067, 10627
1087A046007119, 143, 159, 296, 303, 319, 344, 415, 488, 611, 635, 664, 699, 724, 779, 788, 803, 851, 872, 916, 923, 1115, 1268, 1384, 1492, 1576, 1643, 1684, 1688, 1707, 1779, 1819, 1835, 1891, 1923, 2152, 2164, 2363, 2452, 2643, 2776, 2836, 2899, 3028, 3091, 3139, 3147, 3291, 3412, 3508, 3635, 3667, 3683, 3811, 3859, 3928, 4083, 4227, 4372, 4435, 4579, 4627, 4852, 4915, 5131, 5163, 5272, 5515, 5611, 5667, 5803, 6115, 6259, 6403, 6667, 7123, 7363, 7387, 7435, 7483, 7627, 8227, 8947, 9307, 10147, 10483, 13843
1141A046008167, 271, 659, 967, 1283, 1303, 1307, 1459, 1531, 1699, 2027, 2267, 2539, 2731, 2851, 2971, 3203, 3347, 3499, 3739, 3931, 4051, 5179, 5683, 6163, 6547, 7027, 7507, 7603, 7867, 8443, 9283, 9403, 9643, 9787, 10987, 13003, 13267, 14107, 14683, 15667
12206A046009231, 255, 327, 356, 440, 516, 543, 655, 680, 687, 696, 728, 731, 744, 755, 804, 888, 932, 948, 964, 984, 996, 1011, 1067, 1096, 1144, 1208, 1235, 1236, 1255, 1272, 1336, 1355, 1371, 1419, 1464, 1480, 1491, 1515, 1547, 1572, 1668, 1720, 1732, 1763, 1807, 1812, 1892, 1955, 1972, 2068, 2091, 2104, 2132, 2148, 2155, 2235, 2260, 2355, 2387, 2388, 2424, 2440, 2468, 2472, 2488, 2491, 2555, 2595, 2627, 2635, 2676, 2680, 2692, 2723, 2728, 2740, 2795, 2867, 2872, 2920, 2955, 3012, 3027, 3043, 3048, 3115, 3208, 3252, 3256, 3268, 3304, 3387, 3451, 3459, 3592, 3619, 3652, 3723, 3747, 3768, 3796, 3835, 3880, 3892, 3955, 3972, 4035, 4120, 4132, 4147, 4152, 4155, 4168, 4291, 4360, 4411, 4467, 4531, 4552, 4555, 4587, 4648, 4699, 4708, 4755, 4771, 4792, 4795, 4827, 4888, 4907, 4947, 4963, 5032, 5035, 5128, 5140, 5155, 5188, 5259, 5299, 5307, 5371, 5395, 5523, 5595, 5755, 5763, 5811, 5835, 6187, 6232, 6235, 6267, 6283, 6472, 6483, 6603, 6643, 6715, 6787, 6843, 6931, 6955, 6963, 6987, 7107, 7291, 7492, 7555, 7683, 7891, 7912, 8068, 8131, 8155, 8248, 8323, 8347, 8395, 8787, 8827, 9003, 9139, 9355, 9523, 9667, 9843, 10003, 10603, 10707, 10747, 10795, 10915, 11155, 11347, 11707, 11803, 12307, 12643, 14443, 15163, 15283, 16003, 17803
1337A046010191, 263, 607, 631, 727, 1019, 1451, 1499, 1667, 1907, 2131, 2143, 2371, 2659, 2963, 3083, 3691, 4003, 4507, 4643, 5347, 5419, 5779, 6619, 7243, 7963, 9547, 9739, 11467, 11587, 11827, 11923, 12043, 14347, 15787, 16963, 20563
1495A046011215, 287, 391, 404, 447, 511, 535, 536, 596, 692, 703, 807, 899, 1112, 1211, 1396, 1403, 1527, 1816, 1851, 1883, 2008, 2123, 2147, 2171, 2335, 2427, 2507, 2536, 2571, 2612, 2779, 2931, 2932, 3112, 3227, 3352, 3579, 3707, 3715, 3867, 3988, 4187, 4315, 4443, 4468, 4659, 4803, 4948, 5027, 5091, 5251, 5267, 5608, 5723, 5812, 5971, 6388, 6499, 6523, 6568, 6979, 7067, 7099, 7147, 7915, 8035, 8187, 8611, 8899, 9115, 9172, 9235, 9427, 10123, 10315, 10363, 10411, 11227, 12147, 12667, 12787, 13027, 13435, 13483, 13603, 14203, 16867, 18187, 18547, 18643, 20227, 21547, 23083, 30067
1568A046012239, 439, 751, 971, 1259, 1327, 1427, 1567, 1619, 2243, 2647, 2699, 2843, 3331, 3571, 3803, 4099, 4219, 5003, 5227, 5323, 5563, 5827, 5987, 6067, 6091, 6211, 6571, 7219, 7459, 7547, 8467, 8707, 8779, 9043, 9907, 10243, 10267, 10459, 10651, 10723, 11083, 11971, 12163, 12763, 13147, 13963, 14323, 14827, 14851, 15187, 15643, 15907, 16603, 16843, 17467, 17923, 18043, 18523, 19387, 19867, 20707, 22003, 26203, 27883, 29947, 32323, 34483
16322A046013399, 407, 471, 559, 584, 644, 663, 740, 799, 884, 895, 903, 943, 1015, 1016, 1023, 1028, 1047, 1139, 1140, 1159, 1220, 1379, 1412, 1416, 1508, 1560, 1595, 1608, 1624, 1636, 1640, 1716, 1860, 1876, 1924, 1983, 2004, 2019, 2040, 2056, 2072, 2095, 2195, 2211, 2244, 2280, 2292, 2296, 2328, 2356, 2379, 2436, 2568, 2580, 2584, 2739, 2760, 2811, 2868, 2884, 2980, 3063, 3108, 3140, 3144, 3160, 3171, 3192, 3220, 3336, 3363, 3379, 3432, 3435, 3443, 3460, 3480, 3531, 3556, 3588, 3603, 3640, 3732, 3752, 3784, 3795, 3819, 3828, 3832, 3939, 3976, 4008, 4020, 4043, 4171, 4179, 4180, 4216, 4228, 4251, 4260, 4324, 4379, 4420, 4427, 4440, 4452, 4488, 4515, 4516, 4596, 4612, 4683, 4687, 4712, 4740, 4804, 4899, 4939, 4971, 4984, 5115, 5160, 5187, 5195, 5208, 5363, 5380, 5403, 5412, 5428, 5460, 5572, 5668, 5752, 5848, 5860, 5883, 5896, 5907, 5908, 5992, 5995, 6040, 6052, 6099, 6123, 6148, 6195, 6312, 6315, 6328, 6355, 6395, 6420, 6532, 6580, 6595, 6612, 6628, 6708, 6747, 6771, 6792, 6820, 6868, 6923, 6952, 7003, 7035, 7051, 7195, 7288, 7315, 7347, 7368, 7395, 7480, 7491, 7540, 7579, 7588, 7672, 7707, 7747, 7755, 7780, 7795, 7819, 7828, 7843, 7923, 7995, 8008, 8043, 8052, 8083, 8283, 8299, 8308, 8452, 8515, 8547, 8548, 8635, 8643, 8680, 8683, 8715, 8835, 8859, 8932, 8968, 9208, 9219, 9412, 9483, 9507, 9508, 9595, 9640, 9763, 9835, 9867, 9955, 10132, 10168, 10195, 10203, 10227, 10312, 10387, 10420, 10563, 10587, 10635, 10803, 10843, 10948, 10963, 11067, 11092, 11107, 11179, 11203, 11512, 11523, 11563, 11572, 11635, 11715, 11848, 11995, 12027, 12259, 12387, 12523, 12595, 12747, 12772, 12835, 12859, 12868, 13123, 13192, 13195, 13288, 13323, 13363, 13507, 13795, 13819, 13827, 14008, 14155, 14371, 14403, 14547, 14707, 14763, 14995, 15067, 15387, 15403, 15547, 15715, 16027, 16195, 16347, 16531, 16555, 16723, 17227, 17323, 17347, 17427, 17515, 18403, 18715, 18883, 18907, 19147, 19195, 19947, 19987, 20155, 20395, 21403, 21715, 21835, 22243, 22843, 23395, 23587, 24403, 25027, 25267, 27307, 27787, 28963, 31243
1745A046014383, 991, 1091, 1571, 1663, 1783, 2531, 3323, 3947, 4339, 4447, 4547, 4651, 5483, 6203, 6379, 6451, 6827, 6907, 7883, 8539, 8731, 9883, 11251, 11443, 12907, 13627, 14083, 14779, 14947, 16699, 17827, 18307, 19963, 21067, 23563, 24907, 25243, 26083, 26107, 27763, 31627, 33427, 36523, 37123
18150A046015335, 519, 527, 679, 1135, 1172, 1207, 1383, 1448, 1687, 1691, 1927, 2047, 2051, 2167, 2228, 2291, 2315, 2344, 2644, 2747, 2859, 3035, 3107, 3543, 3544, 3651, 3688, 4072, 4299, 4307, 4568, 4819, 4883, 5224, 5315, 5464, 5492, 5539, 5899, 6196, 6227, 6331, 6387, 6484, 6739, 6835, 7323, 7339, 7528, 7571, 7715, 7732, 7771, 7827, 8152, 8203, 8212, 8331, 8403, 8488, 8507, 8587, 8884, 9123, 9211, 9563, 9627, 9683, 9748, 9832, 10228, 10264, 10347, 10523, 11188, 11419, 11608, 11643, 11683, 11851, 11992, 12067, 12148, 12187, 12235, 12283, 12651, 12723, 12811, 12952, 13227, 13315, 13387, 13747, 13947, 13987, 14163, 14227, 14515, 14667, 14932, 15115, 15243, 16123, 16171, 16387, 16627, 17035, 17131, 17403, 17635, 18283, 18712, 19027, 19123, 19651, 20035, 20827, 21043, 21652, 21667, 21907, 22267, 22443, 22507, 22947, 23347, 23467, 23683, 23923, 24067, 24523, 24667, 24787, 25435, 26587, 26707, 28147, 29467, 32827, 33763, 34027, 34507, 36667, 39307, 40987, 41827, 43387, 48427
1947A046016311, 359, 919, 1063, 1543, 1831, 2099, 2339, 2459, 3343, 3463, 3467, 3607, 4019, 4139, 4327, 5059, 5147, 5527, 5659, 6803, 8419, 8923, 8971, 9619, 10891, 11299, 15091, 15331, 16363, 16747, 17011, 17299, 17539, 17683, 19507, 21187, 21211, 21283, 23203, 24763, 26227, 27043, 29803, 31123, 37507, 38707
20350A046017455, 615, 776, 824, 836, 920, 1064, 1124, 1160, 1263, 1284, 1460, 1495, 1524, 1544, 1592, 1604, 1652, 1695, 1739, 1748, 1796, 1880, 1887, 1896, 1928, 1940, 1956, 2136, 2247, 2360, 2404, 2407, 2483, 2487, 2532, 2552, 2596, 2603, 2712, 2724, 2743, 2948, 2983, 2987, 3007, 3016, 3076, 3099, 3103, 3124, 3131, 3155, 3219, 3288, 3320, 3367, 3395, 3496, 3512, 3515, 3567, 3655, 3668, 3684, 3748, 3755, 3908, 3979, 4011, 4015, 4024, 4036, 4148, 4264, 4355, 4371, 4395, 4403, 4408, 4539, 4548, 4660, 4728, 4731, 4756, 4763, 4855, 4891, 5019, 5028, 5044, 5080, 5092, 5268, 5331, 5332, 5352, 5368, 5512, 5560, 5592, 5731, 5944, 5955, 5956, 5988, 6051, 6088, 6136, 6139, 6168, 6280, 6339, 6467, 6504, 6648, 6712, 6755, 6808, 6856, 7012, 7032, 7044, 7060, 7096, 7131, 7144, 7163, 7171, 7192, 7240, 7428, 7432, 7467, 7572, 7611, 7624, 7635, 7651, 7667, 7720, 7851, 7876, 7924, 7939, 8067, 8251, 8292, 8296, 8355, 8404, 8472, 8491, 8632, 8692, 8755, 8808, 8920, 8995, 9051, 9124, 9147, 9160, 9195, 9331, 9339, 9363, 9443, 9571, 9592, 9688, 9691, 9732, 9755, 9795, 9892, 9976, 9979, 10027, 10083, 10155, 10171, 10291, 10299, 10308, 10507, 10515, 10552, 10564, 10819, 10888, 11272, 11320, 11355, 11379, 11395, 11427, 11428, 11539, 11659, 11755, 11860, 11883, 11947, 11955, 12019, 12139, 12280, 12315, 12328, 12331, 12355, 12363, 12467, 12468, 12472, 12499, 12532, 12587, 12603, 12712, 12883, 12931, 12955, 12963, 13155, 13243, 13528, 13555, 13588, 13651, 13803, 13960, 14307, 14331, 14467, 14491, 14659, 14755, 14788, 15235, 15268, 15355, 15603, 15688, 15691, 15763, 15883, 15892, 15955, 16147, 16228, 16395, 16408, 16435, 16483, 16507, 16612, 16648, 16683, 16707, 16915, 16923, 17067, 17187, 17368, 17563, 17643, 17763, 17907, 18067, 18163, 18195, 18232, 18355, 18363, 19083, 19443, 19492, 19555, 19923, 20083, 20203, 20587, 20683, 20755, 20883, 21091, 21235, 21268, 21307, 21387, 21508, 21595, 21723, 21763, 21883, 22387, 22467, 22555, 22603, 22723, 23443, 23947, 24283, 24355, 24747, 24963, 25123, 25363, 26635, 26755, 26827, 26923, 27003, 27955, 27987, 28483, 28555, 29107, 29203, 30283, 30787, 31003, 31483, 31747, 31987, 32923, 33163, 34435, 35683, 35995, 36283, 37627, 37843, 37867, 38347, 39187, 39403, 40243, 40363, 40555, 40723, 43747, 47083, 48283, 51643, 54763, 58507
2185A046018431, 503, 743, 863, 1931, 2503, 2579, 2767, 2819, 3011, 3371, 4283, 4523, 4691, 5011, 5647, 5851, 5867, 6323, 6691, 7907, 8059, 8123, 8171, 8243, 8387, 8627, 8747, 9091, 9187, 9811, 9859, 10067, 10771, 11731, 12107, 12547, 13171, 13291, 13339, 13723, 14419, 14563, 15427, 16339, 16987, 17107, 17707, 17971, 18427, 18979, 19483, 19531, 19819, 20947, 21379, 22027, 22483, 22963, 23227, 23827, 25603, 26683, 27427, 28387, 28723, 28867, 31963, 32803, 34147, 34963, 35323, 36067, 36187, 39043, 40483, 44683, 46027, 49603, 51283, 52627, 55603, 58963, 59467, 61483
22139A171724591, 623, 767, 871, 879, 1076, 1111, 1167, 1304, 1556, 1591, 1639, 1903, 2215, 2216, 2263, 2435, 2623, 2648, 2815, 2863, 2935, 3032, 3151, 3316, 3563, 3587, 3827, 4084, 4115, 4163, 4328, 4456, 4504, 4667, 4811, 5383, 5416, 5603, 5716, 5739, 5972, 6019, 6127, 6243, 6616, 6772, 6819, 7179, 7235, 7403, 7763, 7768, 7899, 8023, 8143, 8371, 8659, 8728, 8851, 8907, 8915, 9267, 9304, 9496, 10435, 10579, 10708, 10851, 11035, 11283, 11363, 11668, 12091, 12115, 12403, 12867, 13672, 14019, 14059, 14179, 14548, 14587, 14635, 15208, 15563, 15832, 16243, 16251, 16283, 16291, 16459, 17147, 17587, 17779, 17947, 18115, 18267, 18835, 18987, 19243, 19315, 19672, 20308, 20392, 22579, 22587, 22987, 24243, 24427, 25387, 25507, 25843, 25963, 26323, 26548, 27619, 28267, 29227, 29635, 29827, 30235, 30867, 31315, 33643, 33667, 34003, 34387, 35347, 41083, 43723, 44923, 46363, 47587, 47923, 49723, 53827, 77683, 85507
2368A046020647, 1039, 1103, 1279, 1447, 1471, 1811, 1979, 2411, 2671, 3491, 3539, 3847, 3923, 4211, 4783, 5387, 5507, 5531, 6563, 6659, 6703, 7043, 9587, 9931, 10867, 10883, 12203, 12739, 13099, 13187, 15307, 15451, 16267, 17203, 17851, 18379, 20323, 20443, 20899, 21019, 21163, 22171, 22531, 24043, 25147, 25579, 25939, 26251, 26947, 27283, 28843, 30187, 31147, 31267, 32467, 34843, 35107, 37003, 40627, 40867, 41203, 42667, 43003, 45427, 45523, 47947, 90787
24511A048925695, 759, 1191, 1316, 1351, 1407, 1615, 1704, 1736, 1743, 1988, 2168, 2184, 2219, 2372, 2408, 2479, 2660, 2696, 2820, 2824, 2852, 2856, 2915, 2964, 3059, 3064, 3127, 3128, 3444, 3540, 3560, 3604, 3620, 3720, 3864, 3876, 3891, 3899, 3912, 3940, 4063, 4292, 4308, 4503, 4564, 4580, 4595, 4632, 4692, 4715, 4744, 4808, 4872, 4920, 4936, 5016, 5124, 5172, 5219, 5235, 5236, 5252, 5284, 5320, 5348, 5379, 5432, 5448, 5555, 5588, 5620, 5691, 5699, 5747, 5748, 5768, 5828, 5928, 5963, 5979, 6004, 6008, 6024, 6072, 6083, 6132, 6180, 6216, 6251, 6295, 6340, 6411, 6531, 6555, 6699, 6888, 6904, 6916, 7048, 7108, 7188, 7320, 7332, 7348, 7419, 7512, 7531, 7563, 7620, 7764, 7779, 7928, 7960, 7972, 8088, 8115, 8148, 8211, 8260, 8328, 8344, 8392, 8499, 8603, 8628, 8740, 8760, 8763, 8772, 8979, 9028, 9048, 9083, 9112, 9220, 9259, 9268, 9347, 9352, 9379, 9384, 9395, 9451, 9480, 9492, 9652, 9672, 9715, 9723, 9823, 9915, 9928, 9940, 10011, 10059, 10068, 10120, 10180, 10187, 10212, 10248, 10283, 10355, 10360, 10372, 10392, 10452, 10488, 10516, 10612, 10632, 10699, 10740, 10756, 10788, 10792, 10840, 10852, 10923, 11019, 11032, 11139, 11176, 11208, 11211, 11235, 11267, 11307, 11603, 11620, 11627, 11656, 11667, 11748, 11752, 11811, 11812, 11908, 11928, 12072, 12083, 12243, 12292, 12376, 12408, 12435, 12507, 12552, 12628, 12760, 12808, 12820, 12891, 13035, 13060, 13080, 13252, 13348, 13395, 13427, 13444, 13512, 13531, 13539, 13540, 13587, 13611, 13668, 13699, 13732, 13780, 13912, 14035, 14043, 14212, 14235, 14260, 14392, 14523, 14532, 14536, 14539, 14555, 14595, 14611, 14632, 14835, 14907, 14952, 14968, 14980, 15019, 15112, 15267, 15339, 15411, 15460, 15483, 15528, 15555, 15595, 15640, 15652, 15747, 15748, 15828, 15843, 15931, 15940, 15988, 16107, 16132, 16315, 16360, 16468, 16563, 16795, 16827, 16872, 16888, 16907, 16948, 17032, 17043, 17059, 17092, 17283, 17560, 17572, 17620, 17668, 17752, 17812, 17843, 18040, 18052, 18088, 18132, 18148, 18340, 18507, 18568, 18579, 18595, 18627, 18628, 18667, 18763, 18795, 18811, 18867, 18868, 18915, 19203, 19528, 19579, 19587, 19627, 19768, 19803, 19912, 19915, 20260, 20307, 20355, 20427, 20491, 20659, 20692, 20728, 20803, 20932, 20955, 20980, 20995, 21112, 21172, 21352, 21443, 21448, 21603, 21747, 21963, 21988, 22072, 22107, 22180, 22323, 22339, 22803, 22852, 22867, 22939, 23032, 23035, 23107, 23115, 23188, 23235, 23307, 23368, 23752, 23907, 23995, 24115, 24123, 24292, 24315, 24388, 24595, 24627, 24628, 24643, 24915, 24952, 24955, 25048, 25195, 25347, 25467, 25683, 25707, 25732, 25755, 25795, 25915, 25923, 25972, 25987, 26035, 26187, 26395, 26427, 26467, 26643, 26728, 26995, 27115, 27163, 27267, 27435, 27448, 27523, 27643, 27652, 27907, 28243, 28315, 28347, 28372, 28459, 28747, 28891, 29128, 29283, 29323, 29395, 29563, 29659, 29668, 29755, 29923, 30088, 30163, 30363, 30387, 30523, 30667, 30739, 30907, 30955, 30979, 31252, 31348, 31579, 31683, 31795, 31915, 32008, 32043, 32155, 32547, 32635, 32883, 33067, 33187, 33883, 34203, 34363, 34827, 34923, 36003, 36043, 36547, 36723, 36763, 36883, 37227, 37555, 37563, 38227, 38443, 38467, 39603, 39643, 39787, 40147, 40195, 40747, 41035, 41563, 42067, 42163, 42267, 42387, 42427, 42835, 43483, 44947, 45115, 45787, 46195, 46243, 46267, 47203, 47443, 47707, 48547, 49107, 49267, 49387, 49987, 50395, 52123, 52915, 54307, 55867, 56947, 57523, 60523, 60883, 61147, 62155, 62203, 63043, 64267, 79363, 84043, 84547, 111763
2595A056987479, 599, 1367, 2887, 3851, 4787, 5023, 5503, 5843, 7187, 7283, 7307, 7411, 8011, 8179, 9227, 9923, 10099, 11059, 11131, 11243, 11867, 12211, 12379, 12451, 12979, 14011, 14923, 15619, 17483, 18211, 19267, 19699, 19891, 20347, 21107, 21323, 21499, 21523, 21739, 21787, 21859, 24091, 24571, 25747, 26371, 27067, 27091, 28123, 28603, 28627, 28771, 29443, 30307, 30403, 30427, 30643, 32203, 32443, 32563, 32587, 33091, 34123, 34171, 34651, 34939, 36307, 37363, 37747, 37963, 38803, 39163, 44563, 45763, 48787, 49123, 50227, 51907, 54667, 55147, 57283, 57667, 57787, 59707, 61027, 62563, 63067, 64747, 66763, 68443, 69763, 80347, 85243, 89083, 93307

類數為 1、2、3、... 的負判別式的數量分別為 9、18、16、54、25、51、31、... (OEIS A046125)。類數為 1、2、3、... 的最大負判別式分別為 163、427、907、1555、2683、... (OEIS A038552)。

對應於實二次域的判別式 d 為 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40, 41, 44, 53, ... (OEIS A003658),對應的類數 h(d)=1 為 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, ... (OEIS A003652)。

下表給出了具有小類數 h(d) 的前幾個 基本判別式 d 列表,這些判別式對應於 實二次域,並透過包含可被 4 整除的項來擴充 Cohn (1980, pp. 271-274) 的表格 (Cohen 1993, pp. 516-519; Cohen 2000, pp. 534-537)。事實上,除了可能的因子 4 之外,所有二次數域的判別式都是無平方因子數。

h(d)OEISd
1A0036565, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 41, 44, 53, 56, 57, 61, ...
2A09461940, 60, 65, 85, 104, 105, 120, 136, 140, 156, 165, 168, 185, 204, ...
3A094612229, 257, 316, 321, 469, 473, 568, 733, 761, 892, 993, 1016, 1101, ...
4A094613145, 328, 445, 505, 520, 680, 689, 777, 780, 793, 840, 876, 897, 901, ...
5A094614401, 817, 1093, 1393, 1429, 1641, 1756, 1897, 1996, 2081, 2153, 2908, ...

使得判別式為 d 的實二次域具有類 h(d)=n 的最小 d,對於 n=1、2、... 分別為 5、40、229、145、401、697、577、904、1129、... (OEIS A081364)。


另請參閱

二元二次型判別式, 類域論, 類群, 類數公式, 狄利克雷 L 級數, 狄利克雷結構常數, 高斯類數猜想, 高斯類數問題, 黑格納數, 理想, j 函式,

使用 探索

參考文獻

Arno, S. "The Imaginary Quadratic Fields of Class Number 4." Acta Arith. 40, 321-334, 1992.Arno, S.; Robinson, M. L.; and Wheeler, F. S. "Imaginary Quadratic Fields with Small Odd Class Number." http://www.math.uiuc.edu/Algebraic-Number-Theory/0009/.Buell, D. A. "Small Class Numbers and Extreme Values of L-Functions of Quadratic Fields." Math. Comput. 139, 786-796, 1977.Cohen, H. "Table of Class Numbers of Complex Quadratic Fields" and "Table of Class Numbers and Units of Real Quadratic Fields." §B.1 和 B.2 in A Course in Computational Algebraic Number Theory. New York: Springer-Verlag, pp. 513-519, 1993.Cohen, H. "Hilbert Class Fields of Quadratic Fields." §12.1 in Advanced Topics in Computational Number Theory. New York: Springer-Verlag, pp. 533-542, 2000.Cohn, H. Advanced Number Theory. New York: Dover, pp. 163 和 234, 1980.Cox, D. A. Primes of the Form x2+ny2: Fermat, Class Field Theory and Complex Multiplication. New York: Wiley, 1997.Davenport, H. "Dirichlet's Class Number Formula." Ch. 6 in Multiplicative Number Theory, 2nd ed. New York: Springer-Verlag, pp. 43-53, 1980.Finch, S. R. "Class Number Theory." http://algo.inria.fr/csolve/clss.pdf.Himmetoglu, S. Berechnung von Klassenzahlen Imaginaer-Quadratischer Zahlkörper. Diplomarbeit. Heidelberg, Germany: University of Heidelberg Faculty for Mathematics, March 1986.Iyanaga, S. 和 Kawada, Y. (Eds.). "Class Numbers of Algebraic Number Fields." Appendix B, Table 4 in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, pp. 1494-1496, 1980.Montgomery, H. 和 Weinberger, P. "Notes on Small Class Numbers." Acta. Arith. 24, 529-542, 1974.Müller, H. "A Calculation of Class-Numbers of Imaginary Quadratic Numberfields." Tamkang J. Math. 9, 121-128, 1978.Oesterlé, J. "Nombres de classes des corps quadratiques imaginaires." Astérique 121-122, 309-323, 1985.Sloane, N. J. A. Sequences A003652/M0051, A003656/M3777, A003657/M2332, A003658/M3776, A006203/M5131, A006641/M0112, A013658, A014602, A014603, A035120, A038552, A046002, A046003, A046125, A048925, A056987, A081364, A094612, A094613, A094614, 和 A094619 in "The On-Line Encyclopedia of Integer Sequences."Stark, H. M. "A Complete Determination of the Complex Quadratic Fields of Class Number One." Michigan Math. J. 14, 1-27, 1967.Stark, H. M. "On Complex Quadratic Fields with Class Number Two." Math. Comput. 29, 289-302, 1975.Wagner, C. "Class Number 5, 6, and 7." Math. Comput. 65, 785-800, 1996.

在 上被引用

類數

引用為

韋斯坦因,埃裡克·W. "類數。" 來自 Web 資源。 https://mathworld.tw/ClassNumber.html

主題分類