另請參閱
16-胞,
24-胞,
120-胞,
600-胞,
交叉多胞形,
面,
Facet,
超立方體,
關聯矩陣,
線段,
五胞體,
點,
四維多胞形,
多邊形,
多面體,
多面體頂點,
多胞形稜,
多胞形星形化,
本原多胞形,
脊,
單純形,
超正方體,
均勻四維多胞形 在 課堂中探索此主題
使用 探索
參考文獻
Bisztriczky, T.; McMullen, P., Schneider, R.; and Weiss, A. W. (Eds.). Polytopes: Abstract, Convex, and Computational. Dordrecht, Netherlands: Kluwer, 1994.Coxeter, H. S. M. "Regular and Semi-Regular Polytopes I." Math. Z. 46, 380-407, 1940.Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New York: Wiley, 1969.Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, p. 45, 1973.Emmer, M. (Ed.). The Visual Mind: Art and Mathematics. Cambridge, MA: MIT Press, 1993.Eppstein, D. "Polyhedra and Polytopes." http://www.ics.uci.edu/~eppstein/junkyard/polytope.html.Fukuda, K. "Polytope Movie Page." http://www.ifor.math.ethz.ch/~fukuda/polymovie/polymovie.html.MacHale, D. George Boole: His Life and Work. Dublin, Ireland: Boole, 1985.Munkres, J. R. Analysis on Manifolds. Reading, MA: Addison-Wesley, 1991.Sullivan, J. "Generating and Rendering Four-Dimensional Polytopes." Mathematica J. 1, 76-85, 1991.Weisstein, E. W. "Books about Polyhedra." http://www.ericweisstein.com/encyclopedias/books/Polyhedra.html.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, 1991.在 中被引用
多胞形
請引用為
Weisstein, Eric W. "Polytope." 來自 —— 資源。 https://mathworld.tw/Polytope.html
學科分類