等邊帶面體是一種帶面體,其構成星形的線段長度相等 (Coxeter 1973, p. 29)。圖版 II(Coxeter 1973 年第 32 頁之後)展示了一些等邊帶面體。等邊帶面體可以被視為
維超立方體的三維投影 (Ball and Coxeter 1987)。
稜柱是帶面體,也可能是等邊的。下表總結了一些等邊帶面體及其基向量。可以看出,一個柏拉圖立體(立方體),三個阿基米德立體(大斜方二十-十二面體、大斜方截半立方八面體和截角八面體),以及兩個阿基米德對偶體(菱形十二面體和菱形三十面體)是等邊帶面體 (Ball and Coxeter 1987, Towle 1996)。
正帶面體具有由平行四邊形組成的帶,這些帶形成赤道,並被稱為“帶”。
另請參閱
立方體,
九十面體,
大菱形三十面體,
大斜方截半立方八面體,
超立方體,
平行四邊形,
極座標帶面體,
菱形十二面體,
菱形二十面體,
菱面體,
菱形,
帶面體,
Zonotope
使用 探索
參考文獻
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 141-144, 1987.Coxeter, H. S. M. "Zonohedra." §2.8 in Regular Polytopes, 3rd ed. New York: Dover, pp. 27-30, 1973.Coxeter, H. S. M. Ch. 4 in The Beauty of Geometry: Twelve Essays. New York: Dover, 1999.Eppstein, D. "Zonohedra and Zonotopes." http://www.ics.uci.edu/~eppstein/junkyard/zono/.Eppstein, D. "Ukrainian Easter Egg." http://www.ics.uci.edu/~eppstein/junkyard/ukraine/.Fedorov, E. S. "The Symmetry of Regular Systems of Figures." Zap. Mineralog. Obsc. (2) 28, 1-146, 1891. Reprinted as Symmetry of Crystals. American Crystallographic Assoc., 1971.Fedorov, E. S. "Elements of the Study of Figures." Zap. Mineralog. Obsc. (2) 21, 1-279, 1885. Reprinted Moscow: Izdat. Akad. Nauk SSSR, 1953. http://www.research.att.com/~njas/doc/fedorov.ps.Fedorov, E. S. "Elements of the Theory of Figures." Imp. Acad. Sci., St. Petersburg 1885. Reprinted Moscow: Izdat. Akad. Nauk SSSR, 1953.Fedorov, E. S. Zeitschr. Krystallographie und Mineralogie 21, 689, 1893.Hart, G. "Zonohedra." http://www.georgehart.com/virtual-polyhedra/zonohedra-info.html.Harp, G. W. "Zonohedrification." Mathematica J. 7, 374-383, 1999.Kelly, L. M. and Moser, W. O. J. "On the Number of Ordinary Lines Determined by
Points." Canad. J. Math. 1, 210-219, 1958.Towle, R. "Zonohedra." http://personal.neworld.net/~rtowle/Zonohedra/zonohedra.html.Towle, R. "Graphics Gallery: Polar Zonohedra." Mathematica J. 6, 8-12, 1996. http://library.wolfram.com/infocenter/Articles/3335/.在 上被引用
等邊帶面體
請引用為
Weisstein, Eric W. "Equilateral Zonohedron." 來自 -- 資源. https://mathworld.tw/EquilateralZonohedron.html
主題分類