“調和”一詞在數學中有幾個不同的含義,但沒有一個含義與其他含義明顯相關。簡諧運動或“調和振盪”指的是具有正弦波形的振盪。這些函式滿足微分方程
|
(1)
|
其解為
|
(2)
|
因此,調和分析一詞被用來描述 傅立葉級數,它將任意函式分解為正弦波的疊加。
|
(3)
|
其中 是 拉普拉斯運算元。雖然這個定義類似於調和振盪的定義,但它省略了微分方程中的第二項。如果將第二項加回,則得到 亥姆霍茲微分方程,
|
(4)
|
對於線段上的距離,調和範圍是四個 共線 點 、
、
和
的集合,排列如下:
|
(5)
|
這個術語的使用可能源於使用“調和”來指代小整數的音符比率,這些比率產生悅耳的聲音,在音樂理論中被稱為“和聲”。
對於一組資料點 ,調和平均數
定義為
|
(6)
|
“調和”的這種用法與前面的用法之間的聯絡並不明顯。