主題
Search

優美圖


優美圖是可以被優美標記的圖。優美圖的特例包括效用圖 K_(2,3) (Gardner 1983) 和 Petersen 圖。不能被優美標記的圖稱為非優美(或有時稱為可恥)圖。

優美圖可以是連通的或非連通的;例如,單點圖 K_1完全圖 K_n 的不交併 K_1 union K_n 是優美的,當且僅當 n<=4 (Gallian 2018)。

儘管 Erdős 的一項未發表結果表明大多數圖不是優美的 (Graham and Sloane 1980),但大多數具有某種結構規則性的圖都是優美的 (Gallian 2018)。

確定哪些圖是優美的,這是一個尚未解決且顯然非常困難的問題。其困難的原因之一是,優美圖的子圖不一定是優美的 (Seoud and Wilson 1993)。

為了使圖是優美的,它必須沒有環或重邊。具有 n 個頂點和 m 條邊的圖也必須滿足

 n<=m+1

才能是優美的,因為否則沒有足夠的整數小於或等於 m 來覆蓋所有頂點。Rosa (1967) 還提出了另一個可以用來確定圖是否非優美的標準,他證明了尤拉圖邊數如果與 1 或 2 (模 4)同餘,則是非優美的。

UngracefulGraphs

節點數為 n=1, 2, ... 的優美圖的數量為 1, 1, 2, 7, 22, 126, ... (OEIS A308548),而相應的連通優美圖的數量為 1, 1, 2, 6, 18, 106, ... (OEIS A308549)。節點數為 n=1, 2, ... 的非優美圖的數量為 0, 1, 2, 4, 12, 30, 85, ... (OEIS A308556),而相應的連通非優美圖的數量為 0, 0, 0, 0, 3, 6, 34, ... (OEIS A308557),其中前幾個如上所示。

包含單個基本不同的優美標記(即,模圖自同構群並關於減法補運算的唯一標記)的圖可以稱為唯一優美圖,而擁有最大可能數量的基本不同的標記(可能受一些附加條件約束,例如不擁有孤立頂點)的圖可以稱為最大優美圖

優美圖的引數化族包括以下各項

1. 香蕉樹圖

2. 書圖 B_(2m)

3. 毛毛蟲圖

4. 完全圖 K_n 當且僅當 n<=4 (Golomb 1974),

5. 完全二部圖 K_(m,n) (Golomb 1974),

6. 圈圖 C_n 當且僅當 n=0 or 3 (mod 4)

7. 爆竹圖

8. 齒輪圖

9. 網格圖 P_n square P_m

10. 舵輪圖

11. 超立方體圖 Q_n

12. 梯子圖 P_2 square P_n

13. 莫比烏斯梯子 M_n

14. 蒙古包圖

15. 鍋圖

16. 路徑圖 P_n

17. 柏拉圖圖 (Gardner 1983, pp. 158 and 163-164),

18. 稜柱圖 K_2 square C_n

19. 星圖 S_n

20. 日冕圖 C_n circledot K_1

21. 蝌蚪圖

22. 網圖,以及

23. 輪圖 W_n (Frucht 1988)。

n-啞鈴圖對於 n=4 和 5 是非優美的 (E. Weisstein, 2020 年 8 月 15 日),並且可能對於所有更大的 n 也是如此。

1965 年,Kotzig 猜想所有都是優美的,這是一個幾乎可以肯定是正確的猜想,被稱為優美圖定理,但至今仍未被證明。

還有人猜想,除了圈圖 C_nn=1 或 2 (模 4))之外,所有單圈圖都是優美的 (Truszczyński 1984, Gallian 2018)。


另請參閱

邊優美圖, 優美標記, 優美排列, 優美 Pi-路, 優美樹定理, 調和圖, 標記圖, 最大優美圖, 非優美圖, 唯一優美圖

使用 探索

參考文獻

Abraham, J. and Kotzig, A. "All 2-Regular Graphs Consisting of 4-Cycles are Graceful." Disc. Math. 135, 1-24, 1994.Abraham, J. and Kotzig, A. "Extensions of Graceful Valuations of 2-Regular Graphs Consisting of 4-Gons." Ars Combin. 32, 257-262, 1991.Aldred, R. E. L. and McKay, B. "Graceful and Harmonious Labellings of Trees." Bull. Inst. Combin. Appl. 23, 69-72, 1998.Bloom, G. S. and Golomb, S. W. "Applications of Numbered Unidirected Graphs." Proc. IEEE 65, 562-570, 1977.Bolian, L. and Xiankun, Z. "On Harmonious Labellings of Graphs." Ars Combin. 36, 315-326, 1993.Bondy, J. A. and Murty, U. S. R. Graph Theory with Applications. New York: North Holland, p. 248, 1976.Brualdi, R. A. and McDougal, K. F. "Semibandwidth of Bipartite Graphs and Matrices." Ars Combin. 30, 275-287, 1990.Brundage, M. "Graceful Graphs." http://www.qbrundage.com/michaelb/pubs/graceful/.Cahit, I. "Are All Complete Binary Trees Graceful?" Amer. Math. Monthly 83, 35-37, 1976.Delorme, C.; Maheo, M.; Thuillier, H.; Koh, K. M.; and Teo, H. K. "Cycles with a Chord are Graceful." J. Graph Theory 4, 409-415, 1980.Eshghi, K. and Azimi, P. "Applications Of Mathematical Programming in Graceful Labeling of Graphs." J. Appl. Math. 2004, no. 1, 1-8, 2004.Frucht, R. W. and Gallian, J. A. "Labelling Prisms." Ars Combin. 26, 69-82, 1988.Gallian, J. A. "A Survey: Recent Results, Conjectures, and Open Problems in Labelling Graphs." J. Graph Th. 13, 491-504, 1989.Gallian, J. A. "Open Problems in Grid Labeling." Amer. Math. Monthly 97, 133-135, 1990.Gallian, J. A. "A Guide to the Graph Labelling Zoo." Disc. Appl. Math. 49, 213-229, 1994.Gallian, J. A.; Prout, J.; and Winters, S. "Graceful and Harmonious Labellings of Prism Related Graphs." Ars Combin. 34, 213-222, 1992.Gallian, J. "Dynamic Survey of Graph Labeling." Elec. J. Combin. DS6. Dec. 21, 2018. https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6.Gardner, M. "Mathematical Games: The Graceful Graphs of Solomon Golomb, or How to Number a Graph Parsimoniously." Sci. Amer. 226, No. 3, 108-113, March 1972.Gardner, M. "Golomb's Graceful Graphs." Ch. 15 in Wheels, Life, and Other Mathematical Amusements. New York: W. H. Freeman, pp. 152-165, 1983.Golomb, S. W. "How to Number a Graph." In Graph Theory and Computing (Ed. R. C. Read). New York: Academic Press, pp. 23-37, 1972.Golomb, S. W. "The Largest Graceful Subgraph of the Complete Graph." Amer. Math. Monthly 81, 499-501, 1974.Graham, R. L. and Sloane, N. J. A. "On Additive Bases and Harmonious Graphs." SIAM J. Alg. Discrete Methods 1, 382-404, 1980.Guy, R. "Monthly Research Problems, 1969-75." Amer. Math. Monthly 82, 995-1004, 1975.Guy, R. "Monthly Research Problems, 1969-1979." Amer. Math. Monthly 86, 847-852, 1979.Guy, R. K. "The Corresponding Modular Covering Problem. Harmonious Labelling of Graphs." §C13 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 127-128, 1994.Horton, M. "Graceful Trees: Statistics and Algorithms." Bachelor of Computing with Honours thesis. University of Tasmania, 2003. https://eprints.utas.edu.au/19/1/GracefulTreesStatisticsAndAlgorithms.pdf.Huang, J. H. and Skiena, S. "Gracefully Labelling Prisms." Ars Combin. 38, 225-242, 1994.Jungreis, D. S. and Reid, M. "Labelling Grids." Ars Combin. 34, 167-182, 1992.Knuth, D. E. §7.2.2.3 in The Art of Computer Programming, Vol. 4B: Combinatorial Algorithms, Part 2. New York: Addison-Wesley, 2022.Koh, K. M. and Punnim, N. "On Graceful Graphs: Cycles with 3-Consecutive Chords." Bull. Malaysian Math. Soc. 5, 49-64, 1982.Koh, K. M. and Yap, K. Y. "Graceful Numberings of Cycles with a P_3-Chord." Bull. Inst. Math. Acad. Sinica 13, 41-48, 1985.Moulton, D. "Graceful Labellings of Triangular Snakes." Ars Combin. 28, 3-13, 1989.Nikoloski, Z.; Deo, N.; and Suraweera, F. "Generation of Graceful Trees." In 33rd Southeastern International Conference on Combinatorics, Graph Theory and Computing. 2002.Punnim, N. and Pabhapote, N. "On Graceful Graphs: Cycles with a P_k-Chord, k>=4." Ars Combin. A 23, 225-228, 1987.Rosa, A. "On Certain Valuations of the Vertices of a Graph." In Theory of Graphs, International Symposium, Rome, July 1966. New York: Gordon and Breach, pp. 349-355, 1967.Seoud, M. A. and Wilson, R. J. "Some Disgraceful Graphs." Int. J. Math. Educ. Sci. Tech. 24, 435-441, 1993.Sierksma, G. and Hoogeveen, H. "Seven Criteria for Integer Sequences Being Graphic." J. Graph Th. 15, 223-231, 1991.Slater, P. J. "Note on k-Graceful, Locally Finite Graphs." J. Combin. Th. Ser. B 35, 319-322, 1983.Sloane, N. J. A. Sequences A308544, A308545, A308548, A308549, A308556, and A308557 in "The On-Line Encyclopedia of Integer Sequences."Snevily, H. S. "New Families of Graphs That Have alpha-Labellings." Preprint.Snevily, H. S. "Remarks on the Graceful Tree Conjecture." Preprint.Truszczyński, M. "Graceful Unicyclic Graphs." Demonstatio Math. 17, 377-387, 1984.Xie, L. T. and Liu, G. Z. "A Survey of the Problem of Graceful Trees." Qufu Shiyuan Xuebao 1, 8-15, 1984.

在 中被引用

優美圖

請引用本文為

Weisstein, Eric W. "優美圖。" 來自 Web 資源。 https://mathworld.tw/GracefulGraph.html

主題分類