主題
Search

平面劃分


平面劃分是整數 n_(i,j) 的二維陣列,從左到右和從上到下都是非遞增的,並且總和為給定的數字 n。換句話說,

 n_(i,j)>=n_(i,j+1)
(1)
 n_(i,j)>=n_(i+1,j)
(2)

 n=sum_(i,j)n_(i,j).
(3)

這個定義的隱含要求是陣列頂部和左側對齊,並且不包含空洞。

PlanePartition
 5 4 2 1 1; 3 2   ; 2 2
(4)

例如,上面說明了 22 的一個平面劃分。

生成函式,用於平面劃分的數量 PL(n),為 n,是

 sum_(n=0)^inftyPL(n)x^n=1/(product_(k=1)^(infty)(1-x^k)^k)=1+x+3x^2+6x^3+13x^4+24x^5+...
(5)

(OEIS A000219, MacMahon 1912b, Speciner 1972, Bender and Knuth 1972, Bressoud and Propp 1999)。

寫作 a(n)=PL(n)遞推方程,用於 a(n),由下式給出

 a(n)=1/nsum_(k=1)^na(n-k)sigma_2(k),
(6)

其中 sigma_k(n)除數函式。它也有生成函式

 G(x)=exp[sum_(n=1)^inftysigma_2(n)(x^n)/n].
(7)

MacMahon (1960) 還表明,Young tableaux 楊氏表 適合 a×b 矩形內部且整數不超過 c 的平面劃分的數量 PL(a,b,c) (換句話說,所有 n_(i,j)<=c)由下式給出

 PL(a,b,c)=product_(i=1)^aproduct_(j=1)^bproduct_(k=1)^c(i+j+k-1)/(i+j+k-2)
(8)

(Bressoud and Propp 1999, Fulmek and Krattenthaler 2000)。展開乘積得到

PL(a,b,c)=product_(i=1)^(a)(Gamma(i)Gamma(b+c+i))/(Gamma(b+i)Gamma(c+i))
(9)
=(G(a+1)G(b+1)G(c+1)G(a+b+c+1))/(G(a+b+1)G(a+c+1)G(b+c+1)),
(10)

其中 G(n)Barnes G-函式。取 n=a=b=c 得到

PL(n,n,n)=product_(i=1)^(n)(Gamma(i)Gamma(i+2n))/([Gamma(i+n)]^2)
(11)
=([G(n+1)]^3G(3n+1))/([G(2n+1)]^3),
(12)

其中前幾項是 2, 20, 980, 232848, 267227532, 1478619421136, ... (OEIS A008793)。令人驚訝的是,PL(a,b,c) 也給出了邊長為 a, b, c, a, b, c 的六邊形由菱形鋪砌的數量 (David and Tomei 1989, Fulmek and Krattenthaler 2000)。

平面劃分的概念也可以推廣到立方劃分。


另請參閱

迴圈對稱平面劃分, 降序平面劃分, 六邊形鋪砌, 劃分, Macdonald 平面劃分猜想, 立體劃分, 完全對稱自互補平面劃分, Young Tableau

使用 探索

參考文獻

Bender, E. A. and Knuth, D. E. "Enumeration of Plane Partitions." J. Combin. Theory Ser. A. 13, 40-54, 1972.Bressoud, D. Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture. Cambridge, England: Cambridge University Press, 1999.Bressoud, D. and Propp, J. "How the Alternating Sign Matrix Conjecture was Solved." Not. Amer. Math. Soc. 46, 637-646.Cohn, H.; Larsen, M.; and Propp, J. "The Shape of a Typical Boxed Plane Partition." New York J. Math. 4, 137-166, 1998.David, G. and Tomei, C. "The Problem of the Calissons." Amer. Math. Monthly 96, 429-431, 1989.Fulmek, M. and Krattenthaler, C. "The Number of Rhombus Tilings of a Symmetric Hexagon which Contains a Fixed Rhombus on the Symmetry Axes, II." Europ. J. Combin. 21, 601-640, 2000.Knuth, D. E. "A Note on Solid Partitions." Math. Comput. 24, 955-961, 1970.MacMahon, P. A. "Memoir on the Theory of the Partitions of Numbers. V: Partitions in Two-Dimensional Space." Phil. Trans. Roy. Soc. London Ser. A 211, 75-110, 1912a.MacMahon, P. A. "Memoir on the Theory of the Partitions of Numbers. VI: Partitions in Two-Dimensional Space, to which is Added an Adumbration of the Theory of Partitions in Three-Dimensional Space." Phil. Trans. Roy. Soc. London Ser. A 211, 345-373, 1912b.MacMahon, P. A. §429 and 494 in Combinatory Analysis, Vol. 2. New York: Chelsea, 1960.Mills, W. H.; Robbins, D. P.; and Rumsey, H. Jr. "Proof of the Macdonald Conjecture." Invent. Math. 66, 73-87, 1982.Sloane, N. J. A. Sequences A000219/M2566 and A008793 in "The On-Line Encyclopedia of Integer Sequences."Speciner, M. Item 18 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 10, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/boolean.html#item18.Stanley, R. P. "Symmetry of Plane Partitions." J. Combin. Th. Ser. A 3, 103-113, 1986.Stanley, R. P. "A Baker's Dozen of Conjectures Concerning Plane Partitions." In Combinatoire Énumérative: Proceedings of the "Colloque De Combinatoire Enumerative," Held at Université Du Quebec a Montreal, May 28-June 1, 1985 (Ed. G. Labelle and P. Leroux). New York: Springer-Verlag, 285-293, 1986.

在 中被引用

平面劃分

引用為

Weisstein, Eric W. “平面劃分。” 來自 網路資源。 https://mathworld.tw/PlanePartition.html

主題分類