雙曲面是一種二次曲面,可以分為單葉雙曲面或雙葉雙曲面。單葉雙曲面是透過將雙曲線繞連線兩個焦點線段的垂直平分線旋轉而獲得的旋轉曲面,而雙葉雙曲面是透過將雙曲線繞連線兩個焦點的直線旋轉而獲得的旋轉曲面(Hilbert and Cohn-Vossen 1991, p. 11)。
雙曲面
另請參閱
桶形面, 懸鏈面, 共焦橢球座標, 共焦二次曲面, 圓柱面, 雙重直紋曲面, 橢球面, 橢圓雙曲面, 雙曲線, 雙曲面嵌入, 單葉雙曲面, 拋物面, 直紋曲面, 義大利麵束, 三葉雙曲面, 雙葉雙曲面使用 探索
參考文獻
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 227, 1987.Fischer, G. (Ed.). Plates 67 and 69 in Mathematische Modelle aus den Sammlungen von Universitäten und Museen, Bildband. Braunschweig, Germany: Vieweg, pp. 62 and 64, 1986.Gray, A. "The Hyperboloid of Revolution." §20.5 in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, p. 470, 1997.Harris, J. W. and Stocker, H. "Hyperboloid of Revolution." §4.10.3 in Handbook of Mathematics and Computational Science. New York: Springer-Verlag, p. 112, 1998.Hilbert, D. and Cohn-Vossen, S. Geometry and the Imagination. New York: Chelsea, pp. 10-11, 1999.JavaView. "Classic Surfaces from Differential Geometry: Hyperboloid." http://www-sfb288.math.tu-berlin.de/vgp/javaview/demo/surface/common/PaSurface_Hyperboloid.html.Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, 1999.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 112-113, 1991.引用本文為
Weisstein, Eric W. "Hyperboloid." 來自 —— 資源。 https://mathworld.tw/Hyperboloid.html