主題
Search

哥德巴赫猜想


哥德巴赫最初的猜想(有時稱為“三元”哥德巴赫猜想),在 1742 年 6 月 7 日寫給尤拉的信中指出,“至少看起來每個大於 2 的數都是三個素數的”(Goldbach 1742;Dickson 2005, p. 421)。請注意,哥德巴赫認為數字 1 是素數,但這種約定已不再被遵循。正如尤拉重新表達的那樣,這個猜想的一個等價形式(稱為“強”或“二元”哥德巴赫猜想)斷言,所有整數 >=4 都可以表示為兩個素數。 滿足 p+q=2n 的兩個素數 (p,q),其中 n 為正整數,有時被稱為哥德巴赫劃分 (Oliveira e Silva)。

根據 Hardy (1999, p. 19) 的說法,“做出聰明的猜測相對容易;事實上,有一些定理,比如‘哥德巴赫定理’,從未被證明,任何傻瓜都可能猜到。” Faber and Faber 為在 2000 年 3 月 20 日至 2002 年 3 月 20 日期間證明哥德巴赫猜想的任何人提供了 $1000000 美元的獎金,但該獎金無人認領,猜想仍然懸而未決。

Schnirelman (1939) 證明了每個數都可以寫成不超過 300000素數 (Dunham 1990),這似乎與證明兩個素數相去甚遠! Pogorzelski (1977) 聲稱已經證明了哥德巴赫猜想,但他的證明未被普遍接受 (Shanks 1985)。 下表總結了界限 n,強哥德巴赫猜想已被證明對小於 <n 的數字成立。

界限參考
1×10^4Desboves 1885
1×10^5Pipping 1938
1×10^8Stein and Stein 1965ab
2×10^(10)Granville et al. 1989
4×10^(11)Sinisalo 1993
1×10^(14)Deshouillers et al. 1998
4×10^(14)Richstein 1999, 2001
2×10^(16)Oliveira e Silva (Mar. 24, 2003)
6×10^(16)Oliveira e Silva (Oct. 3, 2003)
2×10^(17)Oliveira e Silva (Feb. 5, 2005)
3×10^(17)Oliveira e Silva (Dec. 30, 2005)
12×10^(17)Oliveira e Silva (Jul. 14, 2008)
4×10^(18)Oliveira e Silva (Apr. 2012)

所有奇數 >=9 都是三個奇素數的猜想被稱為“弱”哥德巴赫猜想。 Vinogradov (1937ab, 1954) 證明了每個足夠大奇數都是三個素數 (Nagell 1951, p. 66; Guy 1994),Estermann (1938) 證明了幾乎所有偶數都是兩個素數的和。 Vinogradov 最初的“足夠大” N>=3^(3^(15)) approx e^(e^(16.573)) approx 3.25×10^(6846168) 後來被 Chen 和 Wang (1989) 縮小到 e^(e^(11.503)) approx 3.33×10^(43000)。 Chen (1973, 1978) 還表明,所有足夠大的偶數都是一個素數和最多兩個素數乘積之和 (Guy 1994, Courant and Robbins 1996)。 在最初的猜想提出兩個半多世紀之後,弱哥德巴赫猜想被 Helfgott (2013, 2014) 證明。

弱猜想的一個更強版本,即每個大於等於 >=7 的奇數都可以表示為一個素數加上兩倍的素數之和,被稱為萊維猜想

哥德巴赫猜想的一個等價表述是,對於每個正整數 m,都存在素數 pq 使得

 phi(p)+phi(q)=2m,

其中 phi(x)尤拉函式(例如,Havil 2003, p. 115; Guy 2004, p. 160)。 (這可以立即從素數 pphi(p)=p-1 得出。) Erdős 和 Moser 曾考慮取消此方程中 pq 是素數的限制,作為確定此類數字是否總是存在的可能更簡單的方法 (Guy 1994, p. 105)。

哥德巴赫猜想的其他變體包括以下陳述:每個大於等於 >=6偶數是兩個素數,每個大於 >17整數是恰好三個不同素數的和。

R(n)偶數 n 表示為兩個素數之和的表示數。 那麼,“擴充套件”哥德巴赫猜想指出

 R(n)∼2Pi_2product_(k=2; p_k|n)(p_k-1)/(p_k-2)int_2^n(dx)/((lnx)^2),

其中 Pi_2孿生素數常數 (Halberstam and Richert 1974)。


參見

陳氏定理, 德波利尼亞克猜想, 哥德巴赫數, 哥德巴赫劃分, 萊維猜想, 素數劃分, Schnirelmann 定理, 不可及數, Waring 素數猜想

使用 探索

參考文獻

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 64, 1987.Caldwell, C. K. "Prime Links++." http://primes.utm.edu/links/theory/conjectures/Goldbach/.Chen, J. R. "On the Representation of a Large Even Integer as the Sum of a Prime and the Product of at Most Two Primes." Sci. Sinica 16, 157-176, 1973.Chen, J. R. "On the Representation of a Large Even Integer as the Sum of a Prime and the Product of at Most Two Primes, II." Sci. Sinica 21, 421-430, 1978.Chen, J. R. and Wang, T.-Z. "On the Goldbach Problem." Acta Math. Sinica 32, 702-718, 1989.Courant, R. and Robbins, H. What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 30-31, 1996.Deshouillers, J.-M.; te Riele, H. J. J.; and Saouter, Y. "New Experimental Results Concerning The Goldbach Conjecture." In Algorithmic Number Theory: Proceedings of the 3rd International Symposium (ANTS-III) held at Reed College, Portland, OR, June 21-25, 1998 (Ed. J. P. Buhler). Berlin: Springer-Verlag, pp. 204-215, 1998.Devlin, K. Mathematics: The New Golden Age, rev. ed. New York: Columbia University Press, 1999.Dickson, L. E. "Goldbach's Empirical Theorem: Every Integer is a Sum of Two Primes." In History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, pp. 421-424, 2005.Doxiadis, A. Uncle Petros and Goldbach's Conjecture. Faber & Faber, 2001.Dunham, W. Journey through Genius: The Great Theorems of Mathematics. New York: Wiley, p. 83, 1990.Estermann, T. "On Goldbach's Problem: Proof that Almost All Even Positive Integers are Sums of Two Primes." Proc. London Math. Soc. Ser. 2 44, 307-314, 1938.Faber and Faber. "$1,000,000 Challenge to Prove Goldbach's Conjecture." Archived at http://web.archive.org/web/20020803035741/www.faber.co.uk/faber/million_dollar.asp.Goldbach, C. Letter to L. Euler, June 7, 1742.Granville, A.; van der Lune, J.; and te Riele, H. J. J. "Checking the Goldbach Conjecture on a Vector Computer." In Number Theory and Applications: Proceedings of the NATO Advanced Study Institute held in Banff, Alberta, April 27-May 5, 1988 (Ed. R. A. Mollin). Dordrecht, Netherlands: Kluwer, pp. 423-433, 1989.Guy, R. K. "Goldbach's Conjecture." §C1 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 105-107, 1994.Guy, R. K. Unsolved Problems in Number Theory, 3rd ed. New York: Springer-Verlag, 2004.Halberstam, H. and Richert, H.-E. Sieve Methods. New York: Academic Press, 1974.Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.Hardy, G. H. and Littlewood, J. E. "Some Problems of 'Partitio Numerorum.' III. On the Expression of a Number as a Sum of Primes." Acta Math. 44, 1-70, 1923.Hardy, G. H. and Littlewood, J. E. "Some Problems of Partitio Numerorum (V): A Further Contribution to the Study of Goldbach's Problem." Proc. London Math. Soc. Ser. 2 22, 46-56, 1924.Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, p. 19, 1979.Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.Helfgott, H. A. "The Ternary Goldbach Conjecture." Gac. R. Soc. Mat. Esp. 16, 709-726, 2013.Helfgott, H. A. "The Ternary Goldbach Conjecture Is True." Jan. 17, 2014. https://arxiv.org/pdf/1312.7748.pdf.Nagell, T. Introduction to Number Theory. New York: Wiley, p. 66, 1951.Oliveira e Silva, T. "Goldbach Conjecture Verification." http://www.ieeta.pt/~tos/goldbach.html.Oliveira e Silva, T. "Verification of the Goldbach Conjecture Up to 2*10^16." Mar. 24, 2003a. http://listserv.nodak.edu/scripts/wa.exe?A2=ind0303&L=nmbrthry&P=2394.Oliveira e Silva, T. "Verification of the Goldbach Conjecture Up to 6×10^(16)." Oct. 3, 2003b. http://listserv.nodak.edu/scripts/wa.exe?A2=ind0310&L=nmbrthry&P=168.Oliveira e Silva, T. "New Goldbach Conjecture Verification Limit." Feb. 5, 2005a. http://listserv.nodak.edu/cgi-bin/wa.exe?A1=ind0502&L=nmbrthry#9.Oliveira e Silva, T. "Goldbach Conjecture Verification." Dec. 30, 2005b. http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0512&L=nmbrthry&T=0&P=3233.Peterson, I. "Prime Conjecture Verified to New Heights." Sci. News 158, 103, Aug. 12, 2000.Pipping, N. "Die Goldbachsche Vermutung und der Goldbach-Vinogradovsche Satz." Acta. Acad. Aboensis, Math. Phys. 11, 4-25, 1938.Pogorzelski, H. A. "Goldbach Conjecture." J. reine angew. Math. 292, 1-12, 1977.Richstein, J. "Verifying the Goldbach Conjecture up to 4·10^(14)." Presented at Canadian Number Theory Association, Winnipeg/Canada June 20-24, 1999.Richstein, J. "Verifying the Goldbach Conjecture up to 4·10^(14)." Math. Comput. 70, 1745-1750, 2001.Schnirelman, L. G. Uspekhi Math. Nauk 6, 3-8, 1939.Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 30-31 and 222, 1985.Sinisalo, M. K. "Checking the Goldbach Conjecture up to 4·10^(11)." Math. Comput. 61, 931-934, 1993.Stein, M. L. and Stein, P. R. "New Experimental Results on the Goldbach Conjecture." Math. Mag. 38, 72-80, 1965a.Stein, M. L. and Stein, P. R. "Experimental Results on Additive 2 Bases." BIT 38, 427-434, 1965b.Vinogradov, I. M. "Representation of an Odd Number as a Sum of Three Primes." Comptes rendus (Doklady) de l'Académie des Sciences de l'U.R.S.S. 15, 169-172, 1937a.Vinogradov, I. "Some Theorems Concerning the Theory of Primes." Recueil Math. 2, 179-195, 1937b.Vinogradov, I. M. The Method of Trigonometrical Sums in the Theory of Numbers. London: Interscience, p. 67, 1954.Woon, M. S. C. "On Partitions of Goldbach's Conjecture" 4 Oct 2000. http://arxiv.org/abs/math.GM/0010027.Wang, Y. Goldbach Conjecture. Singapore: World Scientific, 1984.

請引用為

Weisstein, Eric W. "哥德巴赫猜想。" 來自 Web 資源。 https://mathworld.tw/GoldbachConjecture.html

主題分類