主題
Search

排列群


排列群是一個有限群 G,其元素是給定集合的排列,其群運算G排列複合。排列群的階數整除 n!

只有當其中一個是單位元素,另一個是排列對合(即,一個排列是其自身的逆元)時,兩個排列才能形成一個群(Skiena 1990,第 20 頁)。每個具有兩個以上元素的排列群都可以寫成換位的乘積。

排列群在 Wolfram 語言中表示為一組排列輪換,使用PermutationGroup。可以使用以下命令測試一組排列是否構成排列群PermutationGroupQ[l] 在 Wolfram 語言Combinatorica` .

在排列群中互換的元素的共軛類稱為排列輪換

排列群的例子包括對稱群 S_n (階數為 n!),交錯群 A_n (階數為 n!/2,當 n>=2 時),迴圈群 C_n (階數為 n),以及二面體群 D_n (階數為 2n)。


另請參閱

交錯群, 凱萊群定理, 輪換指標, 迴圈群, 二面體群, , 內託猜想, 排列, 排列輪換, 排列圖, 排列對合, 對稱群, 換位

使用 探索

參考文獻

Cameron, P. 排列群。 New York: Cambridge University Press, 1999.Furst, M.; Hopcroft, J.; and Luks, E. "排列群的多項式時間演算法。" In Proc. Symp. Foundations Computer Sci. IEEE, pp. 36-41, 1980.Roberts, F. S. 應用組合數學。 Englewood Cliffs, NJ: Prentice-Hall, 1984.Skiena, S. "排列群。" §1.2 in 《使用 Mathematica 實現離散數學:組合數學和圖論》 Reading, MA: Addison-Wesley, pp. 17-26, 1990.Wielandt, H. 有限排列群。 New York: Academic Press, 1964.

在 上被引用

排列群

引用為

Weisstein, Eric W. "排列群。" 來自 —— 資源。 https://mathworld.tw/PermutationGroup.html

主題分類