開普勒方程給出了天體(如行星)的極座標與從給定初始點起經過的時間之間的關係。開普勒方程在天體力學中具有 фундаментальное 重要性,但不能用簡單函式直接反解,以確定行星在給定時間的位置。
設
為平近點角(時間的引數化),
為在橢圓上以離心率
執行的物體的偏近點角(極角的引數化),則
 |
(1)
|
對於不是
的倍數的
,開普勒方程具有唯一的解,但它是超越方程,因此不能直接反解並求解
以獲得任意給定的
。然而,由於其在天體力學中的重要性,已經推匯出了許多用於求解該方程的演算法。
將
寫成
的冪級數,得到
 |
(2)
|
其中係數由拉格朗日反演定理給出,為
![a_n=1/(2^(n-1)n!)sum_(k=0)^(|_n/2_|)(-1)^k(n; k)(n-2k)^(n-1)sin[(n-2k)M]](/images/equations/KeplersEquation/NumberedEquation3.svg) |
(3)
|
(Wintner 1941, Moulton 1970, Henrici 1974, Finch 2003)。令人驚訝的是,這個級數對於
 |
(4)
|
(OEIS A033259)發散,這個值被稱為拉普拉斯極限。事實上,
作為幾何級數收斂,其比率為
 |
(5)
|
(Finch 2003)。
還有一種用第一類貝塞爾函式表示的級數解,
 |
(6)
|
該級數對於所有
收斂,就像幾何級數一樣,其比率為
 |
(7)
|
該方程也可以透過令
為行星運動方向與矢徑垂直方向之間的角來求解。然後
 |
(8)
|
或者,我們可以用中間變數
來定義 
 |
(9)
|
然後
![sin[1/2(v-E)]=sqrt(r/p)sin(1/2phi)sinv](/images/equations/KeplersEquation/NumberedEquation10.svg) |
(10)
|
![sin[1/2(v+E)]=sqrt(r/p)cos(1/2phi)sinv.](/images/equations/KeplersEquation/NumberedEquation11.svg) |
(11)
|
迭代方法,例如簡單的
 |
(12)
|
其中
工作良好,牛頓法也是如此,
 |
(13)
|
拉普拉斯求解開普勒方程的公式開始發散的點被稱為拉普拉斯極限。
另請參閱
偏近點角,
卡普坦級數,
拉普拉斯極限
在 中探索
參考文獻
Belur, S. V. "Solution of Kepler's Equation by Newton-Raphson Method." http://www.geocities.com/SiliconValley/2902/kepler.htm.Colwell, P. Solving Kepler's Equation over Three Centuries. Richmond, VA: Willmann-Bell, 1993.Danby, J. M. Fundamentals of Celestial Mechanics, 2nd ed., rev. ed. Richmond, VA: Willmann-Bell, 1988.Dörrie, H. "The Kepler Equation." §81 in 100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover, pp. 330-334, 1965.Finch, S. R. "Laplace Limit Constant." §4.8 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 266-268, 2003.Goldstein, H. Classical Mechanics, 2nd ed. Reading, MA: Addison-Wesley, pp. 101-102 and 123-124, 1980.Goursat, E. A Course in Mathematical Analysis, Vol. 2: Functions of a Complex Variable & Differential Equations. New York: Dover, p. 120, 1959.Henrici, P. Applied and Computational Complex Analysis, Vol. 1: Power Series-Integration-Conformal Mapping-Location of Zeros. New York: Wiley, 1974.Ioakimids, N. I. and Papadakis, K. E. "A New Simple Method for the Analytical Solution of Kepler's Equation." Celest. Mech. 35, 305-316, 1985.Ioakimids, N. I. and Papadakis, K. E. "A New Class of Quite Elementary Closed-Form Integrals Formulae for Roots of Nonlinear Systems." Appl. Math. Comput. 29, 185-196, 1989.Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 36, 1983.Marion, J. B. and Thornton, S. T. "Kepler's Equations." §7.8 in Classical Dynamics of Particles & Systems, 3rd ed. San Diego, CA: Harcourt Brace Jovanovich, pp. 261-266, 1988.Moulton, F. R. An Introduction to Celestial Mechanics, 2nd rev. ed. New York: Dover, pp. 159-169, 1970.Montenbruck, O. and Pfleger, T. "Mathematical Treatment of Kepler's Equation." §4.3 in Astronomy on the Personal Computer, 4th ed. Berlin: Springer-Verlag, pp. 62-63 and 65-68, 2000.Plummer, H. An Introductory Treatise of Dynamical Astronomy. New York: Dover, 1960.Siewert, C. E. and Burniston, E. E. "An Exact Analytical Solution of Kepler's Equation." Celest. Mech. 6, 294-304, 1972.Sloane, N. J. A. Sequences A033259 and A085984 in "The On-Line Encyclopedia of Integer Sequences."Watson, G. N. A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge, England: Cambridge University Press, 1966.Wintner, A. The Analytic Foundations of Celestial Mechanics. Princeton, NJ: Princeton University Press, 1941.在 中被引用
開普勒方程
引用為
Weisstein, Eric W. "開普勒方程。" 來自 Web 資源。 https://mathworld.tw/KeplersEquation.html
學科分類