主題
Search

函式

Explore Function on


函式是一種關係,它將一個集合中的元素與另一個集合中的元素唯一關聯。“函式”一詞有時被隱含地理解為連續函式、線性函式或複函式。

函式是一個高中水平的概念,最早會在涵蓋函式預備微積分課程中遇到。它是大學預修課程微積分 AB 的主題,並列在加州州立七年級標準中。

例子

餘弦: 餘弦是直角三角形中角的鄰邊長度與斜邊長度的比率。
指數函式: 指數函式是以自然對數的底數e為底,以給定變數為指數的函式。
Gamma 函式: Gamma 函式是階乘到實數和複數引數的擴充套件。
多項式: 多項式是一個數學表示式,涉及一個或多個變數的冪的和乘以係數。
: 在算術中,冪是給定量被乘方的指數。
有理函式: 有理函式是可以寫成兩個多項式之商的函式。
黎曼Zeta函式: 黎曼Zeta函式是數學和物理學的一個特殊函式,它與圍繞素數定理的深刻結果密切相關。
正弦: 正弦是直角三角形中給定角的對邊長度與斜邊長度的比率。
正切: (1) 在三角學中,角的正切是直角三角形中,角的對邊長度與鄰邊長度的比率。(2) 在幾何學中,如果兩個圖形“剛好接觸”,則稱它們彼此相切。

函式課堂文章

  • 定義域
  • 值域
  • 反函式

  • 預備微積分課堂文章 (高中水平)

  • 漸近線
  • 自然對數
  • 複共軛
  • 法向量
  • 複數
  • 拋物線
  • 複平面
  • 引數方程
  • 圓錐曲線
  • 平面
  • 叉積
  • 平面曲線
  • 曲線
  • 極座標
  • 行列式
  • 反射
  • 點積
  • 旋轉
  • e
  • 旋轉矩陣
  • 橢圓
  • 標量
  • 雙曲線
  • 球座標
  • i
  • 切線
  • 虛數
  • 平移
  • 軌跡
  • 向量
  • 對數