主題
Search

平面曲線


PlaneCurves

平面曲線是位於單個平面內的曲線。平面曲線可以是閉合的或開放的。由於某些原因而有趣且其性質已被研究的曲線被稱為“特殊”曲線(Lawrence 1972)。一些最常見的開放曲線是直線拋物線雙曲線,而一些最常見的閉合曲線是橢圓


另請參閱

代數曲線, 曲線, 薄片, 周長, 空間曲線, 球面曲線 在 課堂中探索此主題

使用 探索

參考文獻

Archibald, R. C. "Curves." Encyclopædia Britannica, 14th ed.Archibald, R. C. "The Cardioide and Some of Its Related Curves." Inaugural dissertation der Mathematischen und Naturwissenschaftlichen Facultät der Kaiser-Wilhelms-Universität, Strassburg zur Erlangung der Doctorwürde. Strassburg, France: J. Singer, 1900.Coolidge, J. L. A Treatise on Algebraic Plane Curves. New York: Dover, p. 30, 1959.Gray, A. "Famous Plane Curves." Ch. 3 in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 49-74, 1997.Hilbert, D. and Cohn-Vossen, S. "Plane Curves." §1 in Geometry and the Imagination. New York: Chelsea, pp. 1-7, 1999.Lawrence, J. D. A Catalog of Special Plane Curves. New York: Dover, 1972.Lockwood, E. H. A Book of Curves. Cambridge, England: Cambridge University Press, 1961.MacTutor History of Mathematics Archive. http://www-groups.dcs.st-and.ac.uk/~history/Curves/Curves.html.Shikin, E. V. Handbook and Atlas of Curves. Boca Raton, FL: CRC Press, 1995.Smith, D. E. "Certain Well-Known Curves." History of Mathematics, Vol. 2: Special Topics of Elementary Mathematics. New York: Dover, pp. 326-331, 1958.Teixeira, F. G. Traité des courbes spéciales remarquables plane et gauches, 3 vols. Coimbra, Portugal, 1908-1915. Reprinted New York: Chelsea, 1971 and Paris: Gabay.Wassenaar, J. "2-D Curves." http://www.2dcurves.com/.Yates, R. C. A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards, 1947.Zwikker, C. The Advanced Geometry of Plane Curves and Their Applications. New York: Dover, 1963.

在 中引用

平面曲線

請引用為

韋斯坦因,埃裡克·W. “平面曲線。” 來自 —— 資源。 https://mathworld.tw/PlaneCurve.html

學科分類