平面曲線是位於單個平面內的曲線。平面曲線可以是閉合的或開放的。由於某些原因而有趣且其性質已被研究的曲線被稱為“特殊”曲線(Lawrence 1972)。一些最常見的開放曲線是直線、拋物線和雙曲線,而一些最常見的閉合曲線是圓和橢圓。
平面曲線
另請參閱
代數曲線, 曲線, 薄片, 周長, 空間曲線, 球面曲線 在 課堂中探索此主題使用 探索
參考文獻
Archibald, R. C. "Curves." Encyclopædia Britannica, 14th ed.Archibald, R. C. "The Cardioide and Some of Its Related Curves." Inaugural dissertation der Mathematischen und Naturwissenschaftlichen Facultät der Kaiser-Wilhelms-Universität, Strassburg zur Erlangung der Doctorwürde. Strassburg, France: J. Singer, 1900.Coolidge, J. L. A Treatise on Algebraic Plane Curves. New York: Dover, p. 30, 1959.Gray, A. "Famous Plane Curves." Ch. 3 in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 49-74, 1997.Hilbert, D. and Cohn-Vossen, S. "Plane Curves." §1 in Geometry and the Imagination. New York: Chelsea, pp. 1-7, 1999.Lawrence, J. D. A Catalog of Special Plane Curves. New York: Dover, 1972.Lockwood, E. H. A Book of Curves. Cambridge, England: Cambridge University Press, 1961.MacTutor History of Mathematics Archive. http://www-groups.dcs.st-and.ac.uk/~history/Curves/Curves.html.Shikin, E. V. Handbook and Atlas of Curves. Boca Raton, FL: CRC Press, 1995.Smith, D. E. "Certain Well-Known Curves." History of Mathematics, Vol. 2: Special Topics of Elementary Mathematics. New York: Dover, pp. 326-331, 1958.Teixeira, F. G. Traité des courbes spéciales remarquables plane et gauches, 3 vols. Coimbra, Portugal, 1908-1915. Reprinted New York: Chelsea, 1971 and Paris: Gabay.Wassenaar, J. "2-D Curves." http://www.2dcurves.com/.Yates, R. C. A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards, 1947.Zwikker, C. The Advanced Geometry of Plane Curves and Their Applications. New York: Dover, 1963.在 中引用
平面曲線請引用為
韋斯坦因,埃裡克·W. “平面曲線。” 來自 —— 資源。 https://mathworld.tw/PlaneCurve.html