通常被稱為費爾巴哈定理的有兩條定理。第一條定理指出,穿過從任意三角形的頂點向對邊所作垂線的垂足的圓,也穿過這些邊的中點,以及連線頂點到垂線交點的線段的中點。這樣的圓被稱為九點圓。
最常被稱為費爾巴哈定理的命題指出,任意三角形的九點圓內切於內切圓,外切於三個旁切圓。這個定理最早由費爾巴哈 (Feuerbach) (1822) 發表。已經給出了許多證明 (Elder 1960),其中最簡單的是 M'Clelland (1891, p. 225) 和 Lachlan (1893, p. 74) 提出的證明。
參見
旁切圓,
費爾巴哈點,
費爾巴哈三角形,
哈特圓,
內切圓,
中點,
九點圓,
垂線,
切線
使用 探索
參考文獻
Altshiller-Court, N. College Geometry: A Second Course in Plane Geometry for Colleges and Normal Schools, 2nd ed., rev. enl. New York: Barnes and Noble, pp. 107, 273, and 290, 1952.Baker, H. F. Appendix to Ch. 12 in An Introduction to Plane Geometry. Cambridge, England: Cambridge University Press, 1943.Coolidge, J. L. A Treatise on the Geometry of the Circle and Sphere. New York: Chelsea, p. 39, 1971.Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. Washington, DC: Math. Assoc. Amer., pp. 117-119, 1967.Dixon, R. Mathographics. New York: Dover, p. 59, 1991.Durell, C. V. Modern Geometry: The Straight Line and Circle. London: Macmillan, p. 117, 1928.Elder, A. E. "Feuerbach's Theorem: A New Proof." Amer. Math. Monthly 67, 905-906, 1960.F. Gabriel-Marie. Exercices de géométrie. Tours, France: Maison Mame, pp. 595-597, 1912.Feuerbach, K. W. Eigenschaften einiger merkwürdigen Punkte des geradlinigen Dreiecks, und mehrerer durch die bestimmten Linien und Figuren. Nürnberg, Germany: Riegel und Wiesner, 1822.Gallatly, W. "Feuerbach's Theorem." §63 in The Modern Geometry of the Triangle, 2nd ed. London: Hodgson, p. 41, 1913.Kroll, W. "Elementarer Beweis des Satzes von Feuerbach." Praxis der Math. 40, 251-254, 1998.Lachlan, R. An Elementary Treatise on Modern Pure Geometry. London: Macmillan, 1893.M'Clelland, W. J. A Treatise on the Geometry of the Circle and Some Extensions to Conic Sections by the Method of Reciprocation, with Numerous Examples. London: Macmillan, 1891.Rouché, E. and de Comberousse, C. Traité de géométrie plane. Paris: Gauthier-Villars, pp. 307-309, 1900.Sawayama, Y. "Démonstration élémentaire du théorème de Feuerbach." L'enseign. math. 7, 479-482, 1905.Sawayama, Y. "8 nouvelles démonstrations d'un théorème relatif au cercle des 9 points." L'enseign. math. 13, 31-49, 1911.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. Middlesex, England: Penguin Books, pp. 76-77, 1991.在 中被引用
費爾巴哈定理
引用為
Weisstein, Eric W. "費爾巴哈定理。" 來自 --一個 資源。 https://mathworld.tw/FeuerbachsTheorem.html
主題分類