主題
Search

二元正態分佈


二元正態分佈是具有機率密度函式的統計分佈

 P(x_1,x_2)=1/(2pisigma_1sigma_2sqrt(1-rho^2))exp[-z/(2(1-rho^2))],
(1)

其中

 z=((x_1-mu_1)^2)/(sigma_1^2)-(2rho(x_1-mu_1)(x_2-mu_2))/(sigma_1sigma_2)+((x_2-mu_2)^2)/(sigma_2^2),
(2)

並且

 rho=cor(x_1,x_2)=(V_(12))/(sigma_1sigma_2)
(3)

x_1x_2相關性(Kenney 和 Keeping 1951, pp. 92 和 202-205; Whittaker 和 Robinson 1967, p. 329),V_(12) 是協方差。

二元正態分佈的機率密度函式實現為MultinormalDistribution[{mu1, mu2}, {{sigma11, sigma12}, {sigma12, sigma22}}] 在 Wolfram 語言 包中MultivariateStatistics` .

邊緣機率然後是

P(x_1)=int_(-infty)^inftyP(x_1,x_2)dx_2
(4)
=1/(sigma_1sqrt(2pi))e^(-(x_1-mu_1)^2/(2sigma_1^2))
(5)

並且

P(x_2)=int_(-infty)^inftyP(x_1,x_2)dx_1
(6)
=1/(sigma_2sqrt(2pi))e^(-(x_2-mu_2)^2/(2sigma_2^2))
(7)

(Kenney 和 Keeping 1951, p. 202)。

Z_1Z_2 是兩個獨立的正態變數,具有均值 mu_i=0sigma_i^2=1 對於 i=1, 2。然後,下面定義的變數 a_1a_2 是具有單位方差相關係數 rho 的二元正態分佈

a_1=sqrt((1+rho)/2)z_1+sqrt((1-rho)/2)z_2
(8)
a_2=sqrt((1+rho)/2)z_1-sqrt((1-rho)/2)z_2.
(9)

為了推導二元正態機率函式,設 X_1X_2 是正態且獨立分佈的變數,具有均值 0 和方差 1,然後定義

Y_1=mu_1+sigma_(11)X_1+sigma_(12)X_2
(10)
Y_2=mu_2+sigma_(21)X_1+sigma_(22)X_2
(11)

(Kenney 和 Keeping 1951, p. 92)。變數 Y_1Y_2 自身也呈正態分佈,具有均值 mu_1mu_2方差

sigma_1^2=sigma_(11)^2+sigma_(12)^2
(12)
sigma_2^2=sigma_(21)^2+sigma_(22)^2,
(13)

協方差

 V_(12)=sigma_(11)sigma_(21)+sigma_(12)sigma_(22).
(14)

協方差矩陣由下式定義

 V_(ij)=[sigma_1^2 rhosigma_1sigma_2; rhosigma_1sigma_2 sigma_2^2],
(15)

其中

 rho=(V_(12))/(sigma_1sigma_2)=(sigma_(11)sigma_(21)+sigma_(12)sigma_(22))/(sigma_1sigma_2).
(16)

現在,x_1x_2 的聯合機率密度函式是

 f(x_1,x_2)dx_1dx_2=1/(2pi)e^(-(x_1^2+x_2^2)/2)dx_1dx_2,
(17)

但從 (◇) 和 (◇) 中,我們得到

 [y_1-mu_1; y_2-mu_2]=[sigma_(11) sigma_(12); sigma_(21) sigma_(22)][x_1; x_2].
(18)

只要

 |sigma_(11) sigma_(12); sigma_(21) sigma_(22)|!=0,
(19)

就可以反轉得到

[x_1; x_2]=[sigma_(11) sigma_(12); sigma_(21) sigma_(22)]^(-1)[y_1-mu_1; y_2-mu_2]
(20)
=1/(sigma_(11)sigma_(22)-sigma_(12)sigma_(21))[sigma_(22) -sigma_(12); -sigma_(21) sigma_(11)][y_1-mu_1; y_2-mu_2].
(21)

因此,

 x_1^2+x_2^2=([sigma_(22)(y_1-mu_1)-sigma_(12)(y_2-mu_2)]^2)/((sigma_(11)sigma_(22)-sigma_(12)sigma_(21))^2) 
 +([-sigma_(21)(y_1-mu_1)+sigma_(11)(y_2-mu_2)]^2)/((sigma_(11)sigma_(22)-sigma_(12)sigma_(21))^2),
(22)

展開 (22) 的分子得到

 sigma_(22)^2(y_1-mu_1)^2-2sigma_(12)sigma_(22)(y_1-mu_1)(y_2-mu_2)+sigma_(12)^2(y_2-mu_2)^2+sigma_(21)^2(y_1-mu_1)^2-2sigma_(11)sigma_(21)(y_1-mu_1)(y_2-mu_2)+sigma_(11)^2(y_2-mu_2)^2,
(23)

所以

 (x_1^2+x_2^2)(sigma_(11)sigma_(22)-sigma_(12)sigma_(21))^2 
=(y_1-mu_1)^2(sigma_(21)^2+sigma_(22)^2)-2(y_1-mu_1)(y_2-mu_2)(sigma_(11)sigma_(21)+sigma_(12)sigma_(22))+(y_2-mu_2)^2(sigma_(11)^2+sigma_(12)^2) 
=sigma_2^2(y_1-mu_1)^2-2(y_1-mu_1)(y_2-mu_2)(rhosigma_1sigma_2)+sigma_1^2(y_2-mu_2)^2 
=sigma_1^2sigma_2^2[((y_1-mu_1)^2)/(sigma_1^2)-(2rho(y_1-mu_1)(y_2-mu_2))/(sigma_1sigma_2)+((y_2-mu_2)^2)/(sigma_2^2)].
(24)

現在,(◇) 的分母

 sigma_(11)^2sigma_(21)^2+sigma_(11)^2sigma_(22)^2+sigma_(12)^2sigma_(21)^2+sigma_(12)^2sigma_(22)^2-sigma_(11)^2sigma_(21)^2 
 -2sigma_(11)sigma_(12)sigma_(21)sigma_(22)-sigma_(12)^2sigma_(22)^2=(sigma_(11)sigma_(22)-sigma_(12)sigma_(21))^2,
(25)

所以

1/(1-rho^2)=1/(1-(V_(12)^2)/(sigma_1^2sigma_2^2))
(26)
=(sigma_1^2sigma_2^2)/(sigma_1^2sigma_2^2-V_(12)^2)
(27)
=(sigma_1^2sigma_2^2)/((sigma_(11)^2+sigma_(12)^2)(sigma_(21)^2+sigma_(22)^2)-(sigma_(11)sigma_(21)+sigma_(12)sigma_(22))^2).
(28)

可以簡單地寫成

 1/(1-rho^2)=(sigma_1^2sigma_2^2)/((sigma_(11)sigma_(22)-sigma_(12)sigma_(21))^2),
(29)

並且

 x_1^2+x_2^2=1/(1-rho^2)[((y_1-mu_1)^2)/(sigma_1^2)-(2rho(y_1-mu_1)(y_2-mu_2))/(sigma_1sigma_2)+((y_2-mu_2)^2)/(sigma_2^2)].
(30)

求解 x_1x_2 並定義

 rho^'=(sigma_1sigma_2sqrt(1-rho^2))/(sigma_(11)sigma_(22)-sigma_(12)sigma_(21))
(31)

得到

x_1=(sigma_(22)(y_1-mu_1)-sigma_(12)(y_2-mu_2))/(rho^')
(32)
x_2=(-sigma_(21)(y_1-mu_1)+sigma_(11)(y_2-mu_2))/(rho^').
(33)

雅可比行列式

J((x_1,x_2)/(y_1,y_2))=|(partialx_1)/(partialy_1) (partialx_1)/(partialy_2); (partialx_2)/(partialy_1) (partialx_2)/(partialy_2)|=|(sigma_(22))/(rho^') -(sigma_(12))/(rho^'); -(sigma_(21))/(rho^') (sigma_(11))/(rho^')|
(34)
=1/(rho^('2))(sigma_(11)sigma_(22)-sigma_(12)sigma_(21))
(35)
=1/(rho^')=1/(sigma_1sigma_2sqrt(1-rho^2)),
(36)

所以

 dx_1dx_2=(dy_1dy_2)/(sigma_1sigma_2sqrt(1-rho^2))
(37)

並且

 1/(2pi)e^(-(x_1^2+x_2^2)/2)dx_1dx_2=1/(2pisigma_1sigma_2sqrt(1-rho^2))exp[-z/(2(1-rho^2))]dy_1dy_2,
(38)

其中

 z=((y_1-mu_1)^2)/(sigma_1^2)-(2rho(y_1-mu_1)(y_2-mu_2))/(sigma_1sigma_2)+((y_2-mu_2)^2)/(sigma_2^2).
(39)

證畢。

二元正態分佈的特徵函式由下式給出

phi(t_1,t_2)=int_(-infty)^inftyint_(-infty)^inftye^(i(t_1x_1+t_2x_2))P(x_1,x_2)dx_1dx_2
(40)
=Nint_(-infty)^inftyint_(-infty)^inftye^(i(t_1x_1+t_2x_2))exp[-z/(2(1-rho^2))]dx_1dx_2,
(41)

其中

 z=[((x_1-mu_1)^2)/(sigma_1^2)-(2rho(x_1-mu_1)(x_2-mu_2))/(sigma_1sigma_2)+((x_2-mu_2)^2)/(sigma_2^2)]
(42)

並且

 N=1/(2pisigma_1sigma_2sqrt(1-rho^2)).
(43)

現在讓

u=x_1-mu_1
(44)
w=x_2-mu_2.
(45)

然後

 phi(t_1,t_2)=N^'int_(-infty)^infty(e^(it_2w)exp[-1/(2(1-rho^2))(w^2)/(sigma_2^2)])int_(-infty)^inftye^ve^(t_1u)dudw,
(46)

其中

v=-1/(2(1-rho^2))1/(sigma_1^2)[u^2-(2rhosigma_1w)/(sigma_2)u]
(47)
N^'=(e^(i(t_1mu_1+t_2mu_2)))/(2pisigma_1sigma_2sqrt(1-rho^2)).
(48)

在內積分中完成平方

 int_(-infty)^inftyexp{-1/(2(1-rho^2))1/(sigma_1^2)[u^2-(2rhosigma_1w)/(sigma_2)u]}e^(t_1u)du 
=int_(-infty)^inftyexp{-1/(2sigma_1^2(1-rho^2))[u-(rho_1sigma_1w)/(sigma^2)]^2}{1/(2sigma_1^2(1-rho^2))((rho_1sigma_1w)/(sigma_2))^2}e^(it_1u)du.
(49)

重新排列以將取決於 w 的指數項移到外積分之外,令

 v=u-rho(sigma_1w)/(sigma_2),
(50)

並寫作

 e^(it_1u)=cos(t_1u)+isin(t_1u)
(51)

得到

 phi(t_1,t_2)=N^'int_(-infty)^inftye^(it_2w)exp[-1/(2sigma_2^2(1-rho^2))w^2]exp[(rho^2)/(2sigma_2^2(1-rho^2))w^2]int_(-infty)^inftyexp[-1/(2sigma_2^2(1-rho^2))v^2]{cos[t_1(v+(rhosigma_1w)/(sigma_2))]+isin[t_1(v+(rhosigma_1w)/(sigma_2))]}dvdw.
(52)

展開括號內的項得到

 [cos(t_1v)cos((rhosigma_1wt_1)/(sigma_2))-sin(t_1v)sin((rhosigma_1w)/(sigma_2t_1))]+i[sin(t_1v)cos((rhosigma_1w)/(sigma_2t_1))+cos(t_1v)sin((rhosigma_1wt_1)/(sigma_2))] 
=[cos((rhosigma_1wt_1)/(sigma_2))+isin((rhosigma_1wt_1)/(sigma_2))][cos(t_1v)+isin(t_1v)]=exp((irhosigma_1w)/(sigma_2)t_1)[cos(t_1v)+isin(t_1v)].
(53)

但是 e^(-ax^2)sin(bx)奇函式,因此正弦項上的積分消失,我們剩下

 phi(t_1,t_2)=N^'int_(-infty)^inftye^(it_2w)exp[-(w^2)/(2sigma_2^2)]exp[(rho^2w^2)/(2sigma_2^2(1-rho^2))]exp[(irhosigma_1wt_1)/(sigma_2)]dwint_(-infty)^inftyexp[-(v^2)/(2sigma_1^2(1-rho^2))]cos(t_1v)dv 
=N^'int_(-infty)^inftyexp[iw(t_2+t_1(rho(sigma_1)/(sigma_2)))]exp[-(w^2)/(2sigma_2^2)]dwint_(-infty)^inftyexp[-(v^2)/(2sigma_1^2(1-rho^2))]cos(t_1v)dv.
(54)

現在評估高斯積分

int_(-infty)^inftye^(ikx)e^(-ax^2)dx=int_(-infty)^inftye^(-ax^2)cos(kx)dx
(55)
=sqrt(pi/a)e^(-k^2/4a)
(56)

以獲得特徵函式的顯式形式,

 phi(t_1,t_2)=(e^(i(t_1mu_1+t_2mu_2)))/(2pisigma_1sigma_2sqrt(1-rho^2)){sigma_2sqrt(2pi)exp[-1/4(t_2+rho(sigma_1)/(sigma_2)t_1)^22sigma_2^2]}{sigma_1sqrt(2pi(1-rho^2))exp[-1/4t_1^22sigma_1^2(1-rho^2)]} 
=e^(i(t_1mu_1+t_2mu_2))exp{-1/2[t_2^2sigma_2^2+2rhosigma_1sigma_2t_1t_2+rho^2sigma_1^2t_1^2+(1-rho^2)sigma_1^2t_1^2]} 
=exp[i(t_1mu_1+t_2mu_2)-1/2(sigma_1^2t_1^2+2rhosigma_1sigma_2t_1t_2+sigma_2^2t_2^2)].
(57)

在奇異情況下,

 |sigma_(11) sigma_(12); sigma_(21) sigma_(22)|=0
(58)

(Kenney 和 Keeping 1951, p. 94),由此得出

 sigma_(11)sigma_(22)=sigma_(12)sigma_(21)
(59)
y_1=mu_1+sigma_(11)x_1+sigma_(12)x_2
(60)
y_2=mu_2+(sigma_(12)sigma_(21))/(sigma_(11))x_2
(61)
=mu_2+(sigma_(11)sigma_(21)x_1+sigma_(12)sigma_(21)x_2)/(sigma_(11))
(62)
=mu_2+(sigma_(21))/(sigma_(11))(sigma_(11)x_1+sigma_(12)x_2),
(63)

所以

y_1=mu_1+x_3
(64)
y_2=mu_2+(sigma_(21))/(sigma_(11))x_3,
(65)

其中

x_3=y_1-mu_1
(66)
=(sigma_(11))/(sigma_(21))(y_2-mu_2).
(67)

標準化的二元正態分佈取 sigma_1=sigma_2=1mu_1=mu_2=0。在這種特殊情況下,象限機率透過分析給出

P(x_1<=0,x_2<=0)=P(x_1>=0,x_2>=0)
(68)
=int_(-infty)^0int_(-infty)^0P(x_1,x_2)dx_1dx_2
(69)
=1/4+(sin^(-1)rho)/(2pi)
(70)

(Rose 和 Smith 1996; Stuart 和 Ord 1998; Rose 和 Smith 2002, p. 231)。類似地,

P(x_1<=0,x_2>=0)=P(x_1>=0,x_2<=0)
(71)
=int_(-infty)^0int_0^inftyP(x_1,x_2)dx_1dx_2
(72)
=(cos^(-1)rho)/(2pi).
(73)

另請參閱

Box-Muller 變換, 二元正態分佈的相關係數, 多元正態分佈, 正態分佈, Price 定理, 三元正態分佈

使用 探索

參考文獻

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 936-937, 1972.Holst, E. "The Bivariate Normal Distribution." http://www.ami.dk/research/bivariate/.Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, 1951.Kotz, S.; Balakrishnan, N.; and Johnson, N. L. "Bivariate and Trivariate Normal Distributions." Ch. 46 in Continuous Multivariate Distributions, Vol. 1: Models and Applications, 2nd ed. New York: Wiley, pp. 251-348, 2000.Rose, C. and Smith, M. D. "The Multivariate Normal Distribution." Mathematica J. 6, 32-37, 1996.Rose, C. and Smith, M. D. "The Bivariate Normal." §6.4 A in Mathematical Statistics with Mathematica. New York: Springer-Verlag, pp. 216-226, 2002.Spiegel, M. R. Theory and Problems of Probability and Statistics. New York: McGraw-Hill, p. 118, 1992.Stuart, A.; and Ord, J. K. Kendall's Advanced Theory of Statistics, Vol. 1: Distribution Theory, 6th ed. New York: Oxford University Press, 1998.Whittaker, E. T. and Robinson, G. "Determination of the Constants in a Normal Frequency Distribution with Two Variables" and "The Frequencies of the Variables Taken Singly." §161-162 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 324-328, 1967.

在 上被引用

二元正態分佈

請引用為

Weisstein, Eric W. “二元正態分佈。” 來自 Web 資源。https://mathworld.tw/BivariateNormalDistribution.html

學科分類