主題
Search

消趾函式


消趾函式(也稱為錐削函式或窗函式)是一種用於在取樣區域邊緣將取樣訊號平滑降至零的函式。這抑制了在執行離散傅立葉變換時可能產生的洩漏旁瓣,但這種抑制是以加寬譜線為代價的,從而導致解析度降低。

下面總結了一些用於對稱(雙邊)干涉圖的消趾函式,以及它們產生的儀器函式(或裝置函式)和儀器函式旁瓣的放大圖。給定消趾函式A(x)對應的儀器函式 I(k) 可以透過取有限傅立葉餘弦變換來計算,

 I(k)=int_(-a)^acos(2pikx)A(x)dx.
(1)
InstrumentFunctions

其中

B_A(x)=(21)/(50)+1/2cos((pix)/a)+2/(25)cos((2pix)/a)
(2)
B_I(k)=(a((21)/(25)-9/(25)a^2k^2)sinc(2piak))/((1-a^2k^2)(1-4a^2k^2))
(3)
Hm_A(x)=(27)/(50)+(23)/(50)cos((pix)/a)
(4)
Hm_I(k)=(a((27)/(25)-(16)/(25)a^2k^2)sinc(2piak))/(1-4a^2k^2)
(5)
Hn_A(x)=cos^2((pix)/(2a))
(6)
=1/2[1+cos((pix)/a)]
(7)
Hn_I(k)=(asinc(2piak))/(1-4a^2k^2)
(8)
=a[sinc(2pika)+1/2sinc(2pika-pi)+1/2sinc(2pika+pi)]
(9)
W_I(k)=a2sqrt(2pi)(J_(3/2)(2pika))/((2pika)^(3/2))
(10)
=a(sin(2pika)-2piakcos(2piak))/(2a^3k^3pi^3).
(11)

下表總結了常用消趾函式的寬度、峰值和峰值旁瓣峰值(負和正)。

型別FWHM 儀器函式IF 峰值(peak (-) sidelobe)/(peak)(peak (+) sidelobe)/(peak)
Bartlett1.7717910.000000000.0471904
Blackman2.29880(21)/(25)-0.001067240.00124325
Connes1.90416(16)/(15)-0.04110490.0128926
餘弦1.639414/pi-0.07080480.0292720
高斯--1----
Hamming1.81522(27)/(25)-0.006891320.00734934
Hanning2.000001-0.02670760.00843441
均勻1.206712-0.2172340.128375
Welch1.590444/3-0.08617130.0356044

一個通用的對稱消趾函式 A(x) 可以寫成傅立葉級數

 A(x)=a_0+2sum_(n=1)^inftya_ncos((npix)/b),
(12)

其中係數滿足

 a_0+2sum_(n=1)^inftya_n=1.
(13)

相應的儀器函式

I(t)=int_(-b)^bA(x)e^(-2piikx)dx
(14)
=2b{a_0sinc(2pikb)+sum_(n=1)^(infty)[sinc(2pikb+npi)+sinc(2pikb-npi)]}.
(15)

要獲得在 ka=3/4 處為零的消趾函式,請使用

 a_0sinc(3/2pi)+a_1[sinc(5/2pi)+sinc(1/2pi)]=0.
(16)

代入 (14),

 -(1-2a_1)2/(3pi)+a_1(2/(5pi)+2/pi)=-1/3(1-2a_1)+a_1(1/5+1)=0
(17)
 a_1(6/5+2/3)=1/3
(18)
a_1=(1/3)/(6/5+2/3)=5/(6·3+2·5)=5/(28)
(19)
a_0=1-2a_1=(28-2·5)/(28)=(18)/(28)=9/(14).
(20)

Hamming 函式接近於儀器函式在 ka=5/4 處變為 0 的要求,得到

a_0=(25)/(46) approx 0.5435
(21)
a_1=(21)/(92) approx 0.2283.
(22)

Blackman 函式的選擇使得儀器函式在 ka=5/4ka=9/4 處變為 0,得到

a_0=(3969)/(9304) approx 0.42659
(23)
a_1=(1155)/(4652) approx 0.24828
(24)
a_2=(715)/(18608) approx 0.38424,
(25)

另請參閱

Bartlett 函式, Blackman 函式, Connes 函式, 餘弦消趾函式, 半峰全寬, 高斯函式, Hamming 函式, Hanning 函式, 洩漏, Mertz 消趾函式, Parzen 消趾函式, 均勻消趾函式, Welch 消趾函式

使用 探索

參考文獻

Ball, J. A. "The Spectral Resolution in a Correlator System" §4.3.5 in Astrophysics, Part C: Radio Observations (Ed. M. L. Meeks). New York: Academic Press, pp. 55-57, 1976.Blackman, R. B. and Tukey, J. W. "Particular Pairs of Windows." In The Measurement of Power Spectra, From the Point of View of Communications Engineering. New York: Dover, pp. 95-101, 1959.Brault, J. W. "Fourier Transform Spectrometry." In High Resolution in Astronomy: 15th Advanced Course of the Swiss Society of Astronomy and Astrophysics (Ed. A. Benz, M. Huber, and M. Mayor). Geneva Observatory, Sauverny, Switzerland, pp. 31-32, 1985.Harris, F. J. "On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform." Proc. IEEE 66, 51-83, 1978.Norton, R. H. and Beer, R. "New Apodizing Functions for Fourier Spectroscopy." J. Opt. Soc. Amer. 66, 259-264, 1976.Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 547-548, 1992.Schnopper, H. W. and Thompson, R. I. "Fourier Spectrometers." In Astrophysics, Part A: Optical and Infrared (Ed. N. P. Carleton). New York: Academic Press, pp. 491-529, 1974.

在 中被引用

消趾函式

請引用為

Weisstein, Eric W. "消趾函式。" 來自 —— 資源。 https://mathworld.tw/ApodizationFunction.html

主題分類