主題
Search

澤尼克多項式


澤尼克多項式是一組正交多項式,它們出現在具有圓形光瞳的光學系統的波前函式展開中。奇數和偶數澤尼克多項式由下式給出

 ^oU_n^m(rho,phi); ^eU_n^m(rho,phi)=R_n^m(rho)sin; cos(mphi)
(1)

其中徑向函式 R_n^m(rho) 定義為 nm 整數,且滿足 n>=m>=0,由下式給出

 R_n^m(rho)={sum_(l=0)^((n-m)/2)((-1)^l(n-l)!)/(l![1/2(n+m)-l]![1/2(n-m)-l]!)rho^(n-2l)   for n-m even; 0   for n-m odd.
(2)

這裡,phi 是方位角,滿足 0<=phi<2pirho 是徑向距離,滿足 0<=rho<=1 (Prata 和 Rusch 1989)。偶數和奇數多項式有時也表示為

Z_n^(-m)(rho,phi)=^oU_n^m(rho,phi)=R_n^m(rho)sin(mphi)
(3)
Z_n^m(rho,phi)=^eU_n^m(rho,phi)=R_n^m(rho)cos(mphi).
(4)

澤尼克多項式在 Wolfram 語言中實現為ZernikeR[n, m, rho].

R_n^m(rho) 的其他閉合形式包括

 R_n^m(rho)=(Gamma(n+1)_2F_1(-1/2(m+n),1/2(m-n);-n;rho^(-2)))/(Gamma(1/2(2+n-m))Gamma(1/2(2+n+m)))rho^n
(5)

對於 n-m 奇數且 m!=n,其中 Gamma(z)伽瑪函式_2F_1(a,b;c;z)超幾何函式。這也可以用 雅可比多項式 P_n^((alpha,beta))(x) 表示為

 R_n^m(rho)=(-1)^((n-m)/2)rho^mP_((n-m)/2)^((m,0))(1-2rho^2).
(6)

前幾個非零徑向多項式為

R_0^0(rho)=1
(7)
R_1^1(rho)=rho
(8)
R_2^0(rho)=2rho^2-1
(9)
R_2^2(rho)=rho^2
(10)
R_3^1(rho)=3rho^3-2rho
(11)
R_3^3(rho)=rho^3
(12)
R_4^0(rho)=6rho^4-6rho^2+1
(13)
R_4^2(rho)=4rho^4-3rho^2
(14)
R_4^4(rho)=rho^4
(15)

(Born 和 Wolf 1989, p. 465)。

徑向函式滿足正交關係

 int_0^1R_n^m(rho)R_(n^')^m(rho)rhodrho=1/(2(n+1))delta_(nn^')R_n^m(1),
(16)

其中 delta_(ij)克羅內克 delta,並且與第一類 貝塞爾函式相關,關係如下

 int_0^1R_n^m(rho)J_m(vrho)rhodrho=(-1)^((n-m)/2)(J_(n+1)(v))/v
(17)

(Born 和 Wolf 1989, p. 466)。徑向澤尼克多項式具有生成函式

 ([1+z-sqrt(1+2z(1-2rho^2)+z^2)]^m)/((2zrho)^msqrt(1+2z(1-2rho^2)+z^2))=sum_(s=0)^inftyz^sR_(m+2s)^(+/-m)(rho)
(18)

(更正了 Born 和 Wolf 的排版錯誤) 並且被歸一化,使得

 R_n^m(1)=1
(19)

(Born 和 Wolf 1989, p. 465)。

澤尼克多項式也滿足遞推關係

 rhoR_n^m(rho)=1/(2(n+1))[(n+m+2)R_(n+1)^(m+1)(rho)+(n-m)R_(n-1)^(m+1)(rho)] 
R_(n+2)^m(rho)=(n+2)/((n+2)^2-m^2){[4(n+1)rho^2-((n+m)^2)/n-((n-m+2)^2)/(n+2)]R_n^m(rho)-(n^2-m^2)/nR_(n-2)^m(rho)} 
R_n^m(rho)+R_n^(m+2)(rho)=1/(n+1)(d[R_(n+1)^(m+1)(rho)-R_(n-1)^(m+1)(rho)])/(drho)
(20)

(Prata 和 Rusch 1989)。任意徑向函式 F(rho,phi) 按照澤尼克多項式展開的係數 A_n^mB_n^m

 F(rho,phi)=sum_(m=0)^inftysum_(n=m)^infty[A_n^m^oU_n^m(rho,phi)+B_n^m^eU_n^m(rho,phi)]
(21)

由下式給出

 A_n^m; B_n^m=((n+1))/(epsilon_(mn)^2pi)int_0^1int_0^(2pi)F(rho,phi)^oU_n^m(rho,phi); ^eU_n^m(rho,phi)rhodphidrho,
(22)

其中

 epsilon_(mn)={epsilon=1/(sqrt(2))   for m=0, n!=0; 1   otherwise
(23)

設“初級”像差由下式給出

 Phi=a_(lmn)^'Y^__1^(2l+m)(theta,phi)rho^ncos^mtheta
(24)

其中 2l+m+n=4,並且 Y^_複共軛 Y,定義

 A_(lmn)^'=a_(lmn)^'Y^__1^(2l+m)(theta,phi),
(25)

得到

 Phi=1/(epsilon_(nm)^2)A_(lmn)R_n^m(rho)cos(mtheta).
(26)

然後,初級像差的型別在下表中給出(Born 和 Wolf 1989, p. 470)。

像差lnmAA^'
球差040A_(040)^'rho^4epsilonA_(040)R_4^0(rho)
彗差031A_(031)^'rho^3costhetaA_(031)R_3^1(rho)costheta
像散022A_(022)^'rho^2cos^2thetaA_(022)R_2^2(rho)cos(2theta)
場曲120A_(120)^'rho^2epsilonA_(120)R_2^0(rho)
畸變111A_(111)^'rhocosthetaA_(111)R_1^1(rho)costheta

另請參閱

雅可比多項式

使用 探索

參考文獻

Bezdidko, S. N. "The Use of Zernike Polynomials in Optics." Sov. J. Opt. Techn. 41, 425, 1974.Bhatia, A. B. and Wolf, E. "On the Circle Polynomials of Zernike and Related Orthogonal Sets." Proc. Cambridge Phil. Soc. 50, 40, 1954.Born, M. and Wolf, E. "The Diffraction Theory of Aberrations." Ch. 9 in Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, 6th ed. New York: Pergamon Press, pp. 459-490, 1989.Mahajan, V. N. "Zernike Circle Polynomials and Optical Aberrations of Systems with Circular Pupils." In Engineering and Lab. Notes 17 (Ed. R. R. Shannon), p. S-21, Aug. 1994.Prata, A. and Rusch, W. V. T. "Algorithm for Computation of Zernike Polynomials Expansion Coefficients." Appl. Opt. 28, 749-754, 1989.Wang, J. Y. and Silva, D. E. "Wave-Front Interpretation with Zernike Polynomials." Appl. Opt. 19, 1510-1518, 1980.Wyant, J. C. "Zernike Polynomials." http://wyant.optics.arizona.edu/zernikes/zernikes.htm.Zernike, F. "Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode." Physica 1, 689-704, 1934.Zhang, S. and Shannon, R. R. "Catalog of Spot Diagrams." Ch. 4 in Applied Optics and Optical Engineering, Vol. 11. New York: Academic Press, p. 201, 1992.

在 中被引用

澤尼克多項式

請引用為

Weisstein, Eric W. "澤尼克多項式。" 來自 Web 資源。 https://mathworld.tw/ZernikePolynomial.html

主題分類