最小紐結圖的纏繞度不是紐結不變數,Perko 對 就是一個例子,它們具有不同的纏繞度 (Hoste et al. 1998)。 這是因為,雖然纏繞度在 Reidemeister 移動 II 和 III 下是不變的,但對於 I 型 Reidemeister 移動,它可能會增加或減少一 (Adams 1994, p. 153)。
Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 152-153 and 185, 1994.Hoste, J.; Thistlethwaite, M.; and Weeks, J. "The First Knots." Math. Intell.20, 33-48, Fall 1998.Kauffman, L. Knots and Physics. Teaneck, NJ: World Scientific, p. 19, 1991.Kaul, R. K. "Topological Quantum Field Theories--A Meeting Ground for Physicists and Mathematicians." 15 Jul 1999. http://arxiv.org/abs/hep-th/9907119.Thistlethwaite, M. B. "Kauffman's Polynomial and Alternating Links.' Topology27, 311-318, 1988.