對於每個 , 2, .... 此結果的一個推論是序列
是 均勻分佈的,因此在區間
內是稠密的,對於無理數
,其中
, 2, ... 且
是
的分數部分 (Finch 2003)。
Weyl 判據
另請參閱
均勻分佈序列, Erdős-圖蘭不一致界限, 分數部分, Ramanujan 和, Weyl 和使用 探索
參考文獻
Bailey, D. H. and Crandall, R. E. "Random Generators and Normal Numbers." Exper. Math. 11, 527-546, 2002.Cassels, J. W. S. An Introduction to Diophantine Analysis. Cambridge, England: Cambridge University Press, 1965.Finch, S. R. "Powers of 3/2 Modulo One." §2.30.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 194-199, 2003.Kuipers, L. and Niederreiter, H. Uniform Distribution of Sequences. New York: Wiley, pp. 7 and 226, 1974.Montgomery, H. L. "Harmonic Analysis as Found in Analytic Number Theory." In Twentieth Century Harmonic Analysis--A Celebration. Proceedings of the NATO Advanced Study Institute Held in Il Ciocco, July 2-15, 2000 (Ed. J. S. Byrnes). Dordrecht, Netherlands: Kluwer, pp. 271-293, 2001.Pólya, G. and Szegö, G. Problems and Theorems in Analysis I. New York: Springer-Verlag, 1972.Radin, C. Miles of Tiles. Providence, RI: Amer. Math. Soc., pp. 79-80, 1999.Vardi, I. Computational Recreations in Mathematica. Redwood City, CA: Addison-Wesley, pp. 155-156 and 254, 1991.Weyl, H. "Über ein Problem aus dem Gebiete der diophantischen Approximationen." Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 234-244, 1914. Reprinted in Gesammelte Abhandlungen, Band I. Berlin: Springer-Verlag, pp. 487-497, 1968.Weyl, H. "Über die Gleichverteilung von Zahlen mod. Eins." Math. Ann. 77, 313-352, 1916. Reprinted in Gesammelte Abhandlungen, Band I. Berlin: Springer-Verlag, pp. 563-599, 1968. Also reprinted in Selecta Hermann Weyl. Basel, Switzerland: Birkhäuser, pp. 111-147, 1956.在 中引用
Weyl 判據引用為
Weisstein, Eric W. "Weyl 判據。" 來自 -- 資源。 https://mathworld.tw/WeylsCriterion.html