閔可夫斯基度規,也稱為閔可夫斯基張量或偽黎曼度規,是一個張量 ,其元素由矩陣定義
|
(1)
|
其中使用了約定 ,且指標
的取值為 0, 1, 2 和 3,其中
是時間座標,而
是空間座標。
|
(2)
|
給出線元素
|
(3)
| |||
|
(4)
|
而閔可夫斯基度規給出了其相對論推廣,即固有時
|
(5)
| |||
|
(6)
|
閔可夫斯基度規是相對論中的基本概念,並在洛倫茲變換的定義中出現,形式為
|
(7)
|
其中 是洛倫茲張量。 它也滿足
|
(8)
|
|
(9)
|
|
(10)
|
閔可夫斯基空間的度規是對角化的,且有
|
(11)
|
因此滿足
|
(12)
|