主題
Search

Hankel Function


存在兩種型別的函式被稱為漢克爾函式。更常見的一種是複函式(也稱為第三類貝塞爾函式,或韋伯函式),它是線性組合,由第一類貝塞爾函式第二類貝塞爾函式構成。

另一種型別的漢克爾函式由輪廓積分定義

 H_epsilon(z)=int_(C_epsilon)((-w)^(z-1)e^(-w))/(1-e^(-w))dw

for I[w]<0, |arg(-w)|<pi, epsilon!=2pik>0, where C_epsilon is a Hankel contour. The Riemann zeta function can be expressed in terms of H_epsilon(z) as

 zeta(z)=-(H_epsilon(z))/(2isin(piz)Gamma(z))

for 0<epsilon<2pi and R[z]>1, where Gamma(z) is the gamma function (Krantz 1999, p. 160).


另請參閱

Hankel Contour, Hankel Function of the First Kind, Hankel Function of the Second Kind, Spherical Hankel Function of the First Kind, Spherical Hankel Function of the Second Kind

使用 探索

參考文獻

Arfken, G. "Hankel Functions." §11.4 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 604-610, 1985.Hankel, H. "Die Cylinderfunctionen erster und zweiter Art." Math. Ann. 1, 467-501, 1869.Hankel, H. "Bestimmte Integrale mit Cylinderfunctionen." Math. Ann. 8, 453-470, 1875.Krantz, S. G. "The Hankel Contour and Hankel Functions." §13.2.4 in Handbook of Complex Variables. Boston, MA: Birkhäuser, p. 159, 1999.Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 623-624, 1953.

在 中被引用

Hankel Function

請引用為

Weisstein, Eric W. “Hankel Function.” 來自 Web 資源。 https://mathworld.tw/HankelFunction.html

主題分類