主題
Search

Golygon


Golygon

在等間距格點集上的平面路徑,從原點開始,第一步向北或向南移動一個單位,第二步向東或向西移動兩個單位,第三步向北或向南移動三個單位,以此類推,直到再次到達原點。不允許交叉或回溯。最簡單的golygon是 (0, 0), (0, 1), (2, 1), (2, -2), (-2, -2), (-2, -7), (-8, -7), (-8, 0), (0, 0)。

如果存在一個整數 n 使得

+/-1+/-3+/-...+/-(n-1)=0
(1)
+/-2+/-4+/-...+/-n=0
(2)

(Vardi 1991)。Gardner 證明了所有 golygon 都形如 n=8k。長度為 n ( 偶數) 的 golygon 的數量,其中每個初始方向分別計數,是 係數 乘積 x^(n^2/8) 在下式中的係數

 product_(k=1,3,...)^(n-1)(x^k+1)=(-x;x^2)_(n/2),
(3)

以及 x^(n(n/2+1)/8) 在下式中的係數

 product_(k=1)^(n/2)(x^k+1)=1/2(-1;x)_(n/2+1).
(4)

長度為 N(n) 的 golygon 數量 8n 對於前幾個 n 的值分別為 4, 112, 8432, 909288, ... (OEIS A006718), 並且漸近於

 N(n)∼(3·2^(8n-4))/(pin^2(4n+1))
(5)

(Sallows et al. 1991, Vardi 1991)。


另請參閱

規範多邊形, 格路, 格點多邊形

使用 探索

參考文獻

Dudeney, A. K. "An Odd Journey Along Even Roads Leads to Home in Golygon City." Sci. Amer. 263, 118-121, July 1990.Sallows, L. C. F. "New Pathways in Serial Isogons." Math. Intell. 14, 55-67, 1992.Sallows, L.; Gardner, M.; Guy, R. K.; and Knuth, D. "Serial Isogons of 90 Degrees." Math Mag. 64, 315-324, 1991.Sloane, N. J. A. Sequence A006718/M3707 in "The On-Line Encyclopedia of Integer Sequences."Smith, H. J. "Golygons." http://www.geocities.com/hjsmithh/Golygons.html.Vardi, I. "American Science." §5.3 in Computational Recreations in Mathematica. Redwood City, CA: Addison-Wesley, pp. 90-96, 1991.

在 中被引用

Golygon

請引用本文為

Weisstein, Eric W. "Golygon." 來自 Web 資源。 https://mathworld.tw/Golygon.html

主題分類