將導數和積分擴充套件到非整數階的研究。分數階微積分基於分數階積分的定義,如下所示:
分數階微積分
另請參閱
導數, 分數階導數, 分數階微分方程, 分數階積分, 分數階積分方程, 積分, 多重積分, Riemann-Liouville 運算元使用 探索
參考文獻
Butzer, P. L. and Westphal, U. "An Introduction to Fractional Calculus." 第 1 章,Applications of Fractional Calculus in Physics (R. Hilfer 編). Singapore: World Scientific, 頁 1-85, 2000.Kilbas, A. A.; Srivastava, H. M.; and Trujiilo, J. J. Theory and Applications of Fractional Differential Equations. Amsterdam, Netherlands: Elsevier, 2006.McBride, A. C. Fractional Calculus. New York: Halsted Press, 1986.Nishimoto, K. Fractional Calculus. New Haven, CT: University of New Haven Press, 1989.Samko, S. G.; Kilbas, A. A.; and Marichev, O. I. Fractional Integrals and Derivatives. Yverdon, Switzerland: Gordon and Breach, 1993.Oldham, K. B. and Spanier, J. The Fractional Calculus: Integrations and Differentiations of Arbitrary Order. New York: Academic Press, 1974.在 上被引用
分數階微積分請引用為
Weisstein, Eric W. "分數階微積分。" 來自 Web 資源。 https://mathworld.tw/FractionalCalculus.html