主題
Search

亥姆霍茲微分方程——拋物柱座標系


拋物柱座標系中,尺度因子h_u=h_v=sqrt(u^2+v^2), h_z=1 分離函式是 f_1(u)=f_2(v)=f_3(z)=1, 給出 Stäckel 行列式 s=u^2+v^2亥姆霍茲微分方程

 1/(u^2+v^2)((partial^2f)/(partialu^2)+(partial^2f)/(partialv^2))+(partial^2f)/(partialz^2)+k^2f=0.
(1)

嘗試分離變數法,透過寫成

 f(u,v,z)=u(u)v(v)z(z),
(2)

那麼亥姆霍茲微分方程變為

 1/(u^2+v^2)(VZ(d^2U)/(du^2)+UZ(d^2V)/(dv^2))+UV(d^2Z)/(dz^2)+k^2UVZ=0.
(3)

除以 UVZ

 1/(u^2+v^2)(1/U(d^2U)/(du^2)+1/V(d^2V)/(dv^2))+1/Z(d^2Z)/(dz^2)+k^2=0.
(4)

分離 Z 部分,

 1/Z(d^2Z)/(dz^2)=-(k^2+m^2)
(5)
 1/(u^2+v^2)(1/U(d^2U)/(du^2)+1/V(d^2V)/(dv^2))-k^2=0
(6)
 1/U(d^2U)/(du^2)+1/V(d^2V)/(dv^2)-k^2(u^2+v^2)=0,
(7)

因此

 (d^2Z)/(dz^2)=-(k^2+m^2)Z,
(8)

其解為

 Z(z)=Acos(sqrt(k^2+m^2)z)+Bsin(sqrt(k^2+m^2)z),
(9)

 (1/U(d^2U)/(du^2)-k^2u^2)+(1/V(d^2V)/(dv^2)-k^2v^2)=0.
(10)

這可以被分離

1/U(d^2U)/(du^2)-k^2u^2=c
(11)
1/V(d^2V)/(dv^2)-k^2v^2=-c,
(12)

因此

 (d^2U)/(du^2)-(c+k^2u^2)U=0
(13)
 (d^2V)/(dv^2)+(c-k^2v^2)V=0.
(14)

這些是韋伯微分方程,其解被稱為拋物柱面函式


另請參閱

亥姆霍茲微分方程, 拋物柱面函式, 拋物柱座標系, 韋伯微分方程

使用 探索

參考文獻

Moon, P. and Spencer, D. E. Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions, 2nd ed. New York: Springer-Verlag, p. 36, 1988.Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 515 and 658, 1953.

引用為

Weisstein, Eric W. “亥姆霍茲微分方程——拋物柱座標系。” 來自 —— 資源。 https://mathworld.tw/HelmholtzDifferentialEquationParabolicCylindricalCoordinates.html

主題分類