變數分離法是求解常微分方程和偏微分方程的一種方法。
對於一個常微分方程
 |
(1)
|
其中
在初始值附近非零,解由下式隱式給出
 |
(2)
|
如果積分可以以閉合形式完成,並且得到的方程可以求解
(這兩個都是相當大的“如果”),那麼就得到了問題的完整解。這種技術最適用的最重要的方程是
,指數增長和衰減方程 (Stewart 2001)。
對於函式
和變數
,
, ... 的偏微分方程,可以透過進行如下形式的替換來應用變數分離法
 |
(3)
|
將得到的方程分解為一組獨立的常微分方程,求解這些方程得到
,
, ...,然後將它們代回原始方程。
這種技術之所以有效,是因為如果獨立變數函式的乘積是常數,則每個函式必須單獨為常數。成功需要選擇合適的座標系,並且可能並非在所有情況下都可實現,具體取決於方程。變數分離法最早由洛必達於 1750 年使用。它在求解數學物理中出現的方程時特別有用,例如拉普拉斯方程、亥姆霍茲微分方程和薛定諤方程。
另請參閱
亥姆霍茲微分方程,
拉普拉斯方程,
偏微分方程,
Stäckel 行列式 在 課堂中探索此主題
此條目的部分內容由 John Renze 貢獻
使用 探索
參考文獻
Arfken, G. "Separation of Variables" and "Separation of Variables--Ordinary Differential Equations." §2.6 和 §8.3 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 111-117 和 448-451, 1985.Bateman, H. Partial Differential Equations of Mathematical Physics. New York: Dover, 1944.Brown, J. W. 和 Churchill, R. V. Fourier Series and Boundary Value Problems, 5th ed. New York: McGraw-Hill, 1993.Byerly, W. E. An Elementary Treatise on Fourier's Series, and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. New York: Dover, 1959.Courant, R. 和 Hilbert, D. Methods of Mathematical Physics, Vol. 1. New York: Wiley, 1989.Courant, R. 和 Hilbert, D. Methods of Mathematical Physics, Vol. 2. New York: Wiley, 1989.Eisenhart, L. P. "Separable Systems in Euclidean 3-Space." Physical Review 45, 427-428, 1934.Eisenhart, L. P. "Separable Systems of Stäckel." Ann. Math. 35, 284-305, 1934.Eisenhart, L. P. "Potentials for Which Schroedinger Equations Are Separable." Phys. Rev. 74, 87-89, 1948.Frank, P. 和 Mises, R. von. Die Differential- und Integralgleichungen der Mechanik und Physik, 8th ed., erster mathematischer Teil. Braunschweig, Germany: Vieweg, 1930.Frank, P. 和 Mises, R. von. Die Differential- und Integralgleichungen der Mechanik und Physik, 8th ed., zweiter physikalischer Teil. Braunschweig, Germany: Vieweg, 1930.Hildebrand, F. B. Advanced Calculus for Engineers. Englewood Cliffs, NJ: Prentice-Hall, 1949.Jeffreys, S. H. 和 Jeffreys, B. S. Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, 1988.Kellogg, O. D. Foundations of Potential Theory. New York: Dover, 1953.Lense, J. Reihenentwicklungen in der mathematischen Physik. Berlin: de Gruyter, 1933.Maxwell, J. C. A Treatise on Electricity and Magnetism, Vol. 1, unabridged 3rd ed. New York: Dover, 1954.Maxwell, J. C. A Treatise on Electricity and Magnetism, Vol. 2, unabridged 3rd ed. New York: Dover, 1954.Miller, W. Jr. Symmetry and Separation of Variables. Reading, MA: Addison-Wesley, 1977.Moon, P. 和 Spencer, D. E. "Separability Conditions for the Laplace and Helmholtz Equations." J. Franklin Inst. 253, 585-600, 1952.Moon, P. 和 Spencer, D. E. "Theorems on Separability in Riemannian n-space." Proc. Amer. Math. Soc. 3, 635-642, 1952.Moon, P. 和 Spencer, D. E. "Recent Investigations of the Separation of Laplace's Equation." Proc. Amer. Math. Soc. 4, 302-307, 1953.Moon, P. 和 Spencer, D. E. "Separability in a Class of Coordinate Systems." J. Franklin Inst. 254, 227-242, 1952.Moon, P. 和 Spencer, D. E. Field Theory for Engineers. Princeton, NJ: Van Nostrand, 1961.Moon, P. 和 Spencer, D. E. "Eleven Coordinate Systems." §1 in Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions, 2nd ed. New York: Springer-Verlag, pp. 1-48, 1988.Morse, P. M. 和 Feshbach, H. "Separable Coordinates" and "Table of Separable Coordinates in Three Dimensions." §5.1 in Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 464-523 和 655-666, 1953.Murnaghan, F. D. Introduction to Applied Mathematics. New York: Wiley, 1948.Smythe, W. R. Static and Dynamic Electricity, 3rd ed., rev. pr. New York: Hemisphere, 1989.Sommerfeld, A. Partial Differential Equations in Physics. New York: Academic Press, 1964.Stewart, J. Calculus: Concepts and Contexts, 2nd ed. Brooks/Cole, 2001.Weber, E. Electromagnetic Fields: Theory and Applications. New York: Wiley, 1950.Webster, A. G. Partial Differential Equations of Mathematical Physics, 2nd corr. ed. New York: Dover, 1955.在 上引用
變數分離法
引用為
Renze, John 和 Weisstein, Eric W. “變數分離法。” 來自 —— 資源。 https://mathworld.tw/SeparationofVariables.html
主題分類