主題
Search

德布魯因-紐曼常數


Xixi 函式,其定義為

 Xi(iz)=1/2(z^2-1/4)pi^(-z/2-1/4)Gamma(1/2z+1/4)zeta(z+1/2).
(1)

Xi(z/2)/8 可以被視為訊號的 傅立葉變換

 Phi(t)=sum_(n=1)^infty(2pi^2n^4e^(9t)-3pin^2e^(5t))e^(-pin^2e^(4t))
(2)

對於 t in R>=0。然後將 Phi(t)e^(lambdat^2)傅立葉變換 記為 H(lambda,z)

 F_t[Phi(t)e^(lambdat^2)](z)=H(lambda,z).
(3)

黎曼猜想 等價於猜想 Lambda<=0 (Rodgers and Tao 2020)。

de Bruijn (1950) 證明了對於 lambda>=1/2H 只有 實數 零點。C. M. Newman (1976) 證明了存在一個常數 Lambda,使得 H 只有 實數 零點,當且僅當 lambda>=Lambda 時成立,並猜想 Lambda>=0。下表總結了 2020 年之前關於 Lambda 的最佳已知下界,當時 Rodgers 和 Tao (2020) 證明了 Lambda>=0

下界參考文獻
-inftyNewman 1976
-50Csordas-Norfolk-Varga 1988
-5te Riele 1991
-0.385Norfolk-Ruttan-Varga 1992
-0.0991Csordas-Ruttan-Varga 1991
-4.379×10^(-6)Csordas-Smith-Varga 1994
-5.895×10^(-9)Csordas-Odlyzko-Smith-Varga 1993
-2.63×10^(-9)Odlyzko 2000
-1.15×10^(-11)Saouter-Gourdon-Demichel 2011

參見

德布魯因常數, Xi 函式

使用 探索

參考文獻

Csordas, G.; Odlyzko, A.; Smith, W.; and Varga, R. S. "A New Lehmer Pair of Zeros and a New Lower Bound for the de Bruijn-Newman Constant." Elec. Trans. Numer. Analysis 1, 104-111, 1993.Csordas, G.; Norfolk, T. S.; and Varga, R. S. "A Lower Bound for the De Bruijn-Newman Constant Lambda." Numer. Math. 52, 483-497, 1988.Csordas, G.; Ruttan, A.; and Varga, R. S. "The Laguerre Inequalities With Applications to a Problem Associated With the Riemann Hypothesis." Numer. Algorithms 1, 305-329, 1991.Csordas, G.; Smith, W.; and Varga, R. S. "Lehmer Pairs of Zeros, the de Bruijn-Newman Constant and the Riemann Hypothesis." Constr. Approx. 10, 107-129, 1994.de Bruijn, N. G. "The Roots of Trigonometric Integrals." Duke Math. J. 17, 197-226, 1950.Finch, S. R. "De Bruijn-Newman Constant." §2.3 2 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 203-205, 2003.Newman, C. M. "Fourier Transforms with only Real Zeros." Proc. Amer. Math. Soc. 61, 245-251, 1976.Norfolk, T. S.; Ruttan, A.; and Varga, R. S. "A Lower Bound for the de Bruijn-Newman Constant Lambda II." In Progress in Approximation Theory (Ed. A. A. Gonchar and E. B. Saff). New York: Springer, pp. 403-418, 1992.Odlyzko, A. M. "An Improved Bound for the De Bruijn-Newman Constant." Numer. Algorithms 25, 293-303, 2000.Rodgers, B. and Tao, T. "The De Bruijn-Newman Constant Is Non-Negative." Forum Math., Pi 8, e6, 62 pp., 2020.Saouter, Y.; Gourdon, X.; and Demichel, P. "An Improved Lower Bound for the De Bruijn-Newman Constant." Math. Comp. 80, 2281-2287, 2011.te Riele, H. J. J. "A New Lower Bound for the De Bruijn-Newman Constant." Numer. Math. 58, 661-667, 1991.

在 中被引用

德布魯因-紐曼常數

請這樣引用

Weisstein, Eric W. “德布魯因-紐曼常數。” 來自 Web 資源。 https://mathworld.tw/deBruijn-NewmanConstant.html

主題分類