主題
Search

三角學角度 -- Pi/17


令人驚訝的是,npi/17 的三角函式(其中 n 為整數)可以用和、積和有限開方來表示,因為 17 是一個費馬素數。這使得正十七邊形成為可作圖的,正如高斯首次證明的那樣。雖然高斯實際上並沒有明確地提供作圖方法,但他確實推匯出了下面的三角公式,這些公式是使用一系列中間變數構建最終表示式的。

epsilon=sqrt(17+sqrt(17))
(1)
epsilon^*=sqrt(17-sqrt(17))
(2)
delta=sqrt(17)-1
(3)
alpha=sqrt(34+6sqrt(17)+sqrt(2)(sqrt(17)-1)epsilon^*-8sqrt(2)epsilon)
(4)
beta=2sqrt(17+3sqrt(17)-2sqrt(2)epsilon-sqrt(2)epsilon^*),
(5)

那麼

sin(pi/(17))=1/8sqrt(2)sqrt(epsilon^*^2-sqrt(2)(alpha+epsilon^*))
(6)
 approx 0.18375
(7)
cos(pi/(17))=1/8sqrt(2)sqrt(15+sqrt(17)+sqrt(2)(alpha+epsilon^*))
(8)
 approx 0.98297
(9)
sin((2pi)/(17))=1/(16)sqrt(2)sqrt(4epsilon^*^2-2sqrt(2)deltaepsilon^*+8sqrt(2)epsilon-(sqrt(2)delta+2epsilon^*)alpha)
(10)
 approx 0.36124
(11)
cos((2pi)/(17))=1/(16)[delta+sqrt(2)(alpha+epsilon^*)]
(12)
 approx 0.93247
(13)
sin((4pi)/(17))=1/(128)[sqrt(2)delta+2(alpha+epsilon^*)][4epsilon^*^2-2sqrt(2)deltaepsilon^*+8sqrt(2)epsilon-(sqrt(2)delta+2epsilon^*)alpha]^(1/2)
(14)
 approx 0.67370
(15)
sin((8pi)/(17))=1/(16)[136-8sqrt(17)+8sqrt(2)epsilon-2(sqrt(34)-3sqrt(2))epsilon^*+2beta(delta+sqrt(2)epsilon^*)]^(1/2)
(16)
 approx 0.99573
(17)
cos((8pi)/(17))=1/(16)(delta+sqrt(2)epsilon^*-2sqrt(17+3sqrt(17)-sqrt(2)epsilon^*-2sqrt(2)epsilon))
(18)
 approx 0.09227.
(19)

有一些有趣的解析公式涉及 npi/17 的三角函式。定義

P(x)=(x-1)(x-2)(x^2+1)
(20)
g_1(x)=(2+sqrt(P(x)))/(1-x)
(21)
g_4(x)=(2-sqrt(P(x)))/(1-x)
(22)
f_i(x)=1/4[g_i(x)-1]
(23)
a=1/4tan^(-1)4,
(24)

其中 i=1 或 4。那麼

f_1(tana)=cos((2pi)/(17))
(25)
f_4(tana)=cos((8pi)/(17)).
(26)

另一個有趣的恆等式由下式給出

 tan(1/4tan^(-1)4)=2[cos((6pi)/(17))+cos((10pi)/(17))],
(27)

其中兩邊都等於

 C=(sqrt(2(17+sqrt(17)))-sqrt(17)-1)/4
(28)

(Wickner 1999)。


另請參閱

可作圖多邊形, 費馬素數, 正十七邊形, 三角學角度, 三角學

使用 探索

參考文獻

Casey, J. A Treatise on Plane Trigonometry, Containing an Account of Hyperbolic Functions, with Numerous Examples. Dublin: Hodges, Figgis, & Co., 頁 220, 1888.Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, 頁碼 192-194 和 229-230, 1996.Dörrie, H. "The Regular Heptadecagon." §37 in 100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover, 頁碼 177-184, 1965.Ore, Ø. Number Theory and Its History. New York: Dover, 1988.Smith, D. E. A Source Book in Mathematics. New York: Dover, 頁 348, 1994.Wickner, J. "Solution to Problem 1562: A Tangent and Cosine Identity." Math. Mag. 72, 頁碼 412-413, 1999.

引用為

魏斯stein,埃裡克·W. "Trigonometry Angles--Pi/17." 來自 -- Wolfram 網路資源. https://mathworld.tw/TrigonometryAnglesPi17.html

主題分類