Q(π)的超越度(有時稱為超越次數)為 1,因為它由一個額外的元素生成。 相比之下,Q(π,π^2)(它是相同的域)的超越度也為 1,因為 π^2 在 Q(π) 上是代數的。 一般來說,域擴張 在 域
上的超越度是生成
所需的
中不是在
上代數的最小元素數量。 如果生成
所需的最小超越元素集合是無限的,則超越度是該集合的基數。
例如,Q(√2,π) 在 Q 上的超越度為 1。 R 在 Q 上的超越度是一個無限基數。 關於數學中的傳統常數,例如 Q(e,π) 的超越度,還有許多未解決的問題。