如果對於點 在 流形
中,對於
的每個開鄰域
,都存在一個 對映
,使得對於某個
,
成立,則稱該點是非遊蕩點。換句話說,每個接近
的點,在
的迭代下,都會有一些迭代結果也接近
。所有非遊蕩點的集合記為
,被稱為
的非遊蕩集。
非遊蕩
另請參閱
Anosov 微分同胚, Axiom A 微分同胚, Smale 馬蹄對映使用 探索
引用為
Weisstein, Eric W. "Nonwandering." 來自 Web 資源. https://mathworld.tw/Nonwandering.html