對於定義在有理數 上的橢圓曲線,有理點的群總是有限生成的(即,總是存在有限的群生成元集)。該定理由 Mordell (1922-23) 證明,並由 Weil (1928) 推廣到數域上的阿貝爾簇。
Mordell-Weil 定理
參見
阿貝爾簇, 橢圓曲線使用 探索
參考文獻
Ireland, K. and Rosen, M. "The Mordell-Weil Theorem." Ch. 19 in A Classical Introduction to Modern Number Theory, 2nd ed. New York: Springer-Verlag, pp. 319-338, 1990.Mordell, L. J. "On the Rational Solutions of the Indeterminate Equations of the Third and Fourth Degrees." Proc. Cambridge Philos. Soc. 21, 179-192, 1922-23.Nagell, T. "Rational Points on Plane Algebraic Curves. Mordell's Theorem." §69 in Introduction to Number Theory. New York: Wiley, pp. 253-260, 1951.Serre, J. P. Lectures on the Mordell-Weil Theorem, 3rd ed. Braunschweig, Germany: Vieweg, 1997.Weil, A. "L'arithmétique sur les courbes algébriques." Acta Math. 52, 281-315, 1928.在 中被引用
Mordell-Weil 定理引用為
Weisstein, Eric W. "Mordell-Weil Theorem." 來自 網路資源. https://mathworld.tw/Mordell-WeilTheorem.html