球面透視投影是一種非保角地圖投影,透過從球心 將球面上的點
(或
)投影到與點
相切的平面上的點
而獲得(Coxeter 1969,第 93 頁)。在上圖中,
是南極,但通常可以是球體上的任何點。由於這種投影顯然將對蹠點
和
傳送到平面中的同一點
,因此它只能用於一次投影一個半球。在球面透視投影中,大圓被對映到直線。球面透視投影表示由球面透鏡形成的影像,有時也稱為直線投影。
在上面的投影中,點 的緯度和經度取為
,因此位於赤道上。對於中心經度為
和中心緯度為
的投影,在點
處與平面相切的變換方程,點
的緯度為
,經度為
,由下式給出
|
(1)
| |||
|
(2)
|
且 是點
到投影中心的角距離,由下式給出
|
(3)
|
逆變換方程為
|
(4)
| |||
|
(5)
|
其中
|
(6)
| |||
|
(7)
|
反正切函式的雙引數形式最適合用於此計算。