主題
Search

可數集


一個集合是可數的當且僅當它與有限序數等勢。(Moore 1982, p. 6; Rubin 1967, p. 107; Suppes 1972, pp. 151-152)。然而,Ciesielski (1997, p. 64) 稱此性質為“可數的”。集合 aleph0 最常被稱為“可數集”到“可數無限”。


另請參閱

可數集, 可數無限

使用 探索

參考文獻

Ciesielski, K. Set Theory for the Working Mathematician. Cambridge, England: Cambridge University Press, 1997.Dauben, J. W. Georg Cantor: His Mathematics and Philosophy of the Infinite. Princeton, NJ: Princeton University Press, 1990.Ferreirós, J. "Non-Denumerability of R." §6.2 in Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics. Basel, Switzerland: Birkhäuser, pp. 177-183, 1999.Moore, G. H. Zermelo's Axiom of Choice: Its Origin, Development, and Influence. New York: Springer-Verlag, 1982.Rubin, J. E. Set Theory for the Mathematician. New York: Holden-Day, 1967.Suppes, P. Axiomatic Set Theory. New York: Dover, 1972.

在 中被引用

可數集

請引用為

Weisstein, Eric W. “可數集。” 來自 Web 資源。 https://mathworld.tw/DenumerableSet.html

學科分類