主題
Search

圓內接三角形的選取


TriangleInscribing

在一個單位圓的圓周上隨機選取三個點,並找出由這三個點確定的三角形面積的分佈。

不失一般性,第一個點可以被賦予座標 (1,0)。將從第一個點到第二個和第三個點的中心角分別稱為 theta_1theta_2。由於對稱性,theta_1 的範圍可以限制在 [0,pi],但 theta_2 的範圍可以是 [0,2pi)。然後

 A(theta_1,theta_2)=2sin(1/2theta_1)sin(1/2theta_2)sin[1/2(theta_1-theta_2)],
(1)

因此

A^_=(int_0^piint_0^(2pi)|A|dtheta_2dtheta_1)/(int_0^piint_0^(2pi)dtheta_2dtheta_1)
(2)
=1/(2pi^2)int_0^piint_0^(2pi)|A|dtheta_2dtheta_1.
(3)

因此,

A^_=2/(2pi^2)int_0^piint_0^(2pi)|sin(1/2theta_1)sin(1/2theta_2)sin[1/2(theta_1-theta_2)]|dtheta_2dtheta_1
(4)
=1/(pi^2)int_0^pisin(1/2theta_1)[int_0^(2pi)sin(1/2theta_2)|sin[1/2(theta_2-theta_1)]|dtheta_2]dtheta_1
(5)
=1/(pi^2)int_0^(pi)int_0^(2pi); theta_2-theta_1>0sin(1/2theta_1)sin(1/2theta_2)sin[1/2(theta_1-theta_2)]dtheta_2dtheta_1+1/(pi^2)int_0^(pi)int_0^(2pi); theta_2-theta_1<0sin(1/2theta_1)sin(1/2theta_2)sin[1/2(theta_1-theta_2)]dtheta_2dtheta_1
(6)
=1/(pi^2)int_0^pisin(1/2theta_1)[int_(theta_1)^(2pi)sin(1/2theta_2)sin[1/2(theta_2-theta_1)]dtheta_2]dtheta_1+1/(pi^2)int_0^pisin(1/2theta_1)[int_0^(theta_1)sin(1/2theta_2)sin[1/2(theta_2-theta_1)]dtheta_2]dtheta_1.
(7)

但是

int(1/2theta_2)sin[1/2(theta_2-theta_1)]dtheta_2=intsin(1/2theta_2)[sin(1/2theta_2)cos(1/2theta_2)-sin(1/2theta_1)cos(1/2theta_2)]dtheta_2
(8)
=cos(1/2theta_1)intsin^2(1/2theta_2)dtheta_2-sin(1/2theta_1)intsin(1/2theta_1)cos(1/2theta_2)dtheta_2
(9)
=1/2cos(1/2theta_1)int(1-costheta_2)dtheta_2-1/2sin(1/2theta_2)intsintheta_2dtheta_2
(10)
=1/2cos(1/2theta_1)(theta_2-sintheta_2)+1/2sin(1/2theta_1)cos(theta_2).
(11)

將 (10) 寫成

 A^_=1/(pi^2)[int_0^pisin(1/2theta_1)I_1dtheta_1+int_0^pisin(1/2theta_1)I_2dtheta_1],
(12)

那麼

 I_1=int_(theta_1)^(2pi)sin(1/2theta_2)sin[1/2(theta_2-theta_1)]dtheta_2,
(13)

並且

 I_2=int_0^(theta_1)sin(1/2theta_2)sin[1/2(theta_1-theta_2)]dtheta_2.
(14)

從 (12) 中,

I_1=1/2cos(1/2theta_2)[theta_2-sintheta_2]_(theta_1)^(2pi)+1/2sin(1/2theta_1)[costheta_2]_(theta_1)^(2pi)
(15)
=1/2cos(1/2theta_1)(2pi-theta_1+sintheta_1)+1/2sin(1/2theta_1)(1-costheta_1)
(16)
=picos(1/2theta_1)-1/2theta_1cos(1/2theta_1)+1/2[cos(1/2theta_1)sintheta_1-costheta_1sin(1/2theta_1)]+1/2sin(1/2theta_1)
(17)
=picos(1/2theta_1)-1/2theta_1cos(1/2theta_1)+1/2+1/2sin(theta_1-1/2theta_1)+1/2sin(1/2theta_1)
(18)
=picos(1/2theta_1)-1/2theta_1cos(1/2theta_1)+sin(1/2theta_1),
(19)

因此

 int_0^piI_1sin(1/2theta_1)dtheta_1=5/4pi.
(20)

此外,

I_2=1/2cos(1/2theta_1)[sintheta_2-theta_2]_0^(theta_1)-1/2sin(1/2theta_1)[costheta_2]_0^(theta_1)
(21)
=1/2cos(1/2theta_2)(sintheta_1-theta_1)-1/2sin(1/2theta_1)(costheta_1-1)
(22)
=-1/2theta_1cos(1/2theta_1)+1/2[sintheta_1cos(1/2theta_1)-costheta_1sin(1/2theta_2)]+1/2sin(1/2theta_1)
(23)
=-1/2theta_1cos(1/2theta_1)+sin(1/2theta_1),
(24)

因此

 int_0^piI_2sin(1/2theta_1)dtheta_1=1/4pi.
(25)

結合 (◇) 和 (◇) 得到平均三角形面積為

 A^_=1/(pi^2)((5pi)/4+pi/4)=3/(2pi)=0.47746...
(26)

(OEIS A093582)。

前幾個矩是

mu_1^'=3/(2pi)
(27)
mu_2^'=3/8
(28)
mu_3^'=(35)/(32pi)
(29)
mu_4^'=(45)/(128)
(30)
mu_5^'=(3003)/(2560pi)
(31)
mu_6^'=(105)/(256)
(32)

(OEIS A093583A093584 和 OEIS A093585A093586)。

因此,方差由下式給出

 sigma_A^2=<A>^2-<A^2>=(3(pi^2-6))/(8pi^2) approx 0.1470.
(33)

在圓的圓周上隨機選取的三個點確定的三角形內部包含原點的機率是 1/4。


另請參閱

圓線選取, 圓盤三角形選取, 直線選取, 球面點選取

使用 探索

參考文獻

Sloane, N. J. A. “整數序列線上百科全書” 中的序列 A093582, A093583, A093584, A093585A093586

在 中被引用

圓內接三角形的選取

請引用為

Weisstein, Eric W. “圓內接三角形的選取。” 來自 Web 資源。 https://mathworld.tw/CircleTrianglePicking.html

主題分類