主題
Search

葉序


某些植物中葉片的美麗排列,稱為葉序,遵循一些微妙的數學關係。 例如,向日葵花盤中的小花形成兩個方向相反的螺旋:55 個順時針方向和 34 個逆時針方向。 令人驚訝的是,這些數字是連續的 斐波那契數。 間隔 斐波那契數 的比率由收斂值 phi^(-2) 給出,其中 phi黃金比例,據說衡量植物莖上連續葉片之間轉動的分數:榆樹和椴樹為 1/2,山毛櫸和榛樹為 1/3,橡樹和蘋果樹為 2/5,楊樹和玫瑰為 3/8,柳樹和杏樹為 5/13 等。(Coxeter 1969,Ball 和 Coxeter 1987)。 類似的現象也發生在雛菊、菠蘿、松果、花椰菜等等。

百合花、鳶尾花和延齡草有三片花瓣; 耬鬥菜、毛茛花、翠雀花和野玫瑰有五片花瓣; 飛燕草、血根草和波斯菊有八片花瓣; 玉米萬壽菊有 13 片花瓣; 紫菀有 21 片花瓣; 雛菊有 34、55 或 89 片花瓣——全部都是 斐波那契數


另請參閱

Daisy, Fibonacci Number, Golden Angle, Spiral

使用 探索

參考文獻

Azukawa, K. and Yuzawa, T. "A Remark on the Continued Fraction Expansion of Conjugates of the Golden Section." Math. J. Toyama Univ. 13, 165-176, 1990.Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 第 13 版 New York: Dover, pp. 56-57, 1987.Church, A. H. The Relation of Phyllotaxis to Mechanical Laws. London: Williams and Norgate, 1904.Church, A. H. On the Interpretation of Phenomena of Phyllotaxis. Riverside, NJ: Hafner, 1968.Conway, J. H. and Guy, R. K. "Phyllotaxis." In The Book of Numbers. New York: Springer-Verlag, pp. 113-125, 1995.Cook, T. A. The Curves of Life, Being an Account of Spiral Formations and Their Application to Growth in Nature, To Science and to Art. New York: Dover, 1979.Coxeter, H. S. M. "The Golden Section and Phyllotaxis." Ch. 11 in Introduction to Geometry, 2nd ed. New York: Wiley, 1969.Coxeter, H. S. M. "The Role of Intermediate Convergents in Tait's Explanation for Phyllotaxis." J. Algebra 10, 167-175, 1972.Coxeter, H. S. M. "The Golden Section, Phyllotaxis, and Wythoff's Game." Scripta Mathematica 19, 135-143, 1953.Dixon, R. "The Mathematics and Computer Graphics of Spirals in Plants." Leonardo 16, 86-90, 1983.Dixon, R. Mathographics. New York: Dover, 1991.Douady, S. and Couder, Y. "Phyllotaxis as a Self-Organized Growth Process." In Growth Patterns in Physical Sciences and Biology (Ed. J. M. Garcia-Ruiz et al. ). New York: Plenum, 1993.Gardner, M. Mathematical Circus: More Puzzles, Games, Paradoxes and Other Mathematical Entertainments from Scientific American. New York: Knopf, 1979.Hargittai, I. and Pickover, C. A. (編輯). Spiral Symmetry. New York: World Scientific, 1992.Hunter, J. A. H. and Madachy, J. S. Mathematical Diversions. New York: Dover, pp. 20-22, 1975.Jean, R. V. "Number-Theoretic Properties of Two-Dimensional Lattices." J. Number Th. 29, 206-223, 1988.Jean, R. V. "On the Origins of Spiral Symmetry in Plants." In Spiral Symmetry. (Ed. I. Hargittai and C. A. Pickover). New York: World Scientific, pp. 323-351, 1992.Jean, R. V. Phyllotaxis: A Systematic Study in Plant Morphogenesis. New York: Cambridge University Press, 1994.Naylor, M. "Golden, sqrt(2), and pi Flowers: A Spiral Story." Math. Mag. 75, 163-172, 2002.Livio, M. The Golden Ratio: The Story of Phi, the World's Most Astonishing Number. New York: Broadway Books, 2002.Pappas, T. "The Fibonacci Sequence & Nature." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 222-225, 1989.Prusinkiewicz, P. and Lindenmayer, A. The Algorithmic Beauty of Plants. New York: Springer-Verlag, 1990.Steinhaus, H. Mathematical Snapshots, 第 3 版 New York: Dover, p. 138, 1999.Stevens, P. S. Patterns in Nature. London: Peregrine, 1977.Stewart, I. "Daisy, Daisy, Give Me Your Answer, Do." Sci. Amer. 200, 96-99, Jan. 1995.Thompson, D. W. On Growth and Form. Cambridge, England: Cambridge University Press, 1952.Trott, M. Graphica 1: The World of Mathematica Graphics. The Imaginary Made Real: The Images of Michael Trott. Champaign, IL: Wolfram Media, pp. 11 and 83, 1999.Vogel, H. "A Better Way to Construct the Sunflower Head." Math. Biosci. 44, 179-189, 1979.Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, pp. 65-66, 1986.

在 中引用

葉序

引用為

Weisstein, Eric W. “葉序。” 來自 —— 資源。 https://mathworld.tw/Phyllotaxis.html

主題分類