主題
Search

格同態


L=<L, v , ^ >K=<K, v , ^ >,且設 h:L->K。則 h 是格同態當且僅當對於任何 a,b in Lh(a v b)=h(a) v h(b)h(a ^ b)=h(a) ^ h(b)。因此,格同態是一種特殊的結構同態。換句話說,對映 h 是格同態,當且僅當它既是並同態又是交同態

如果 h 是單射格同態,則它是格嵌入,並且如果格嵌入是滿射,則它是格同構

泛代數中,一個重要的格同構的例子是由對應定理保證的同構,該定理指出,如果 A 是一個代數,並且 thetaA 上的同餘關係,則對映 h:[theta,del _A]->Con(A/theta) 由公式定義

 h(phi)=phi/theta={([a]_theta,[b]_theta) in (A/theta)^2|(a,b) in phi}

是一個格同構


參見

, 格嵌入, 格同構, 結構同態

此條目由 Matt Insall 貢獻 (作者連結)

使用 探索

參考文獻

Bandelt, H. H. "Tolerance Relations on Lattices." Bull. Austral. Math. Soc. 23, 367-381, 1981.Birkhoff, G. Lattice Theory, 3rd ed. Providence, RI: Amer. Math. Soc., 1967.Burris, S. and Sankappanavar, H. P. A Course in Universal Algebra. New York: Springer-Verlag, 1981. http://www.thoralf.uwaterloo.ca/htdocs/ualg.html.Chajda, I. and Zelinka, B. "Tolerances and Convexity." Czech. Math. J. 29, 584-587, 1979.Chajda, I. and Zelinka, B. "A Characterization of Tolerance-Distributive Tree Semilattices." Czech. Math. J. 37, 175-180, 1987.Gehrke, M.; Kaiser, K.; and Insall, M. "Some Nonstandard Methods Applied to Distributive Lattices." Zeitschrifte für Mathematische Logik und Grundlagen der Mathematik 36, 123-131, 1990.Grätzer, G. Lattice Theory: First Concepts and Distributive Lattices. San Francisco, CA: W. H. Freeman, 1971.Grätzer, G. Universal Algebra, 2nd ed. New York: Springer-Verlag, 1979.Grätzer, G. General Lattice Theory, 2nd ed. Boston, MA: Birkhäuser, 1998.Hobby, D. and McKenzie, R. The Structure of Finite Algebras. Providence, RI: Amer. Math. Soc., 1988.Insall, E. "Nonstandard Methods and Finiteness Conditions in Algebra." Ph.D. dissertation. Houston, TX: University of Houston, 1989.Insall, M. "Some Finiteness Conditions in Lattices Using Nonstandard Proof Methods." J. Austral. Math. Soc. 53, 266-280, 1992.Insall, M. "Geometric Conditions for Local Finiteness of a Lattice of Convex Sets." Math. Moravica 1, 35-40, 1997.Schweigert, D. "Central Relations on Lattices." J. Austral. Math. Soc. 37, 213-219, 1988.Schweigert, D. and Szymanska, M. "On Central Relations of Complete Lattices." Czech. Math. J. 37, 70-74, 1987.

在 上被引用

格同態

請引用為

Insall, Matt. "格同態。" 來自 Web 資源,由 Eric W. Weisstein 建立。 https://mathworld.tw/LatticeHomomorphism.html

主題分類