主題
Search


在物理學中,“熵”一詞具有重要的物理意義,表示系統的“無序”程度。在數學中,使用更抽象的定義。變數 X 的(夏農)熵定義為

 H(X)=-sum_(x)P(x)log_2[P(x)]

位元,其中 P(x) 是 X 處於狀態 x 的機率,並且如果 P=0,則 Plog_2P 定義為 0。變數 X_1, ..., X_n 的聯合熵則定義為

 H(X_1,...,X_n)=-sum_(x_1)...sum_(x_n)P(x_1,...,x_n)log_2[P(x_1,...,x_n)].

另請參閱

微分熵, 資訊理論, 柯爾莫哥洛夫熵, 最大熵方法, 度量熵, 互資訊, 納特, 奧恩斯坦定理, 冗餘, 相對熵, 拓撲熵

使用 探索

參考文獻

Ellis, R. S. Entropy, Large Deviations, and Statistical Mechanics. New York: Springer-Verlag, 1985.Havil, J. "A Measure of Uncertainty." §14.1 in Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 139-145, 2003.Khinchin, A. I. Mathematical Foundations of Information Theory. New York: Dover, 1957.Lasota, A. and Mackey, M. C. Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, 2nd ed. New York: Springer-Verlag, 1994.Ott, E. "Entropies." §4.5 in Chaos in Dynamical Systems. New York: Cambridge University Press, pp. 138-144, 1993.Rothstein, J. "Information, Measurement, and Quantum Mechanics." Science 114, 171-175, 1951.Schnakenberg, J. "Network Theory of Microscopic and Macroscopic Behavior of Master Equation Systems." Rev. Mod. Phys. 48, 571-585, 1976.Shannon, C. E. "A Mathematical Theory of Communication." The Bell System Technical J. 27, 379-423 and 623-656, July and Oct. 1948. http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf.Shannon, C. E. and Weaver, W. Mathematical Theory of Communication. Urbana, IL: University of Illinois Press, 1963.

在 中被引用

請引用為

Eric W. Weisstein "熵。" 來自 —— 資源。 https://mathworld.tw/Entropy.html

學科分類