主題
Search

Borsuk 猜想


Borsuk 猜想認為,可以將一個廣義直徑為 1 的 n 維形狀切割成 n+1 塊,每塊的直徑都小於原始形狀的直徑。對於 n=2、3 以及當邊界“光滑”時,這個猜想是成立的。然而,所需的最小塊數已被證明會隨著 ∼1.1^(sqrt(n)) 的增加而增加。由於當 1.1^(sqrt(n))>n+1n=9162,該猜想在高維度下變為錯誤。

Kahn 和 Kalai (1993) 在 1326 維中找到了一個反例,Nilli (1994) 在 946 維中找到了一個反例。Hinrichs 和 Richter (2003) 表明,對於所有 n>297,該猜想都是錯誤的。


另請參閱

廣義直徑, Keller 猜想, Lebesgue 最小問題

使用 探索

參考文獻

Borsuk, K. "Über die Zerlegung einer Euklidischen n-dimensionalen Vollkugel in n Mengen." Verh. Internat. Math.-Kongr. Zürich 2, 192, 1932.Borsuk, K. "Drei Sätze über die n-dimensionale euklidische Sphäre." Fund. Math. 20, 177-190, 1933.Cipra, B. "If You Can't See It, Don't Believe It...." Science 259, 26-27, 1993.Cipra, B. What's Happening in the Mathematical Sciences, Vol. 1. Providence, RI: Amer. Math. Soc., pp. 21-25, 1993.Grünbaum, B. "Borsuk's Problem and Related Questions." In Convexity: Proceedings of the Seventh Symposium in Pure Mathematics of the American Mathematical Society, Held at the University of Washington, Seattle, June 13-15, 1961. Providence, RI: Amer. Math. Soc., pp. 271-284, 1963.Hinrichs, A. and Richter, C. "New Sets with Large Borsuk Numbers." Disc. Math. 270, 137-147, 2003.Kahn, J. and Kalai, J. K. G. "A Counterexample to Borsuk's Conjecture." Bull. Amer. Math. Soc. 29, 60-62, 1993.Lyusternik, L. and Schnirel'mann, L. Topological Methods in Variational Problems. Moscow, 1930.Lyusternik, L. and Schnirel'mann, L. "Topological Methods in Variational Problems and Their Application to the Differential Geometry of Surfaces." Uspehi Matem. Nauk (N.S.) 2, 166-217, 1947.Nilli, A. "On Borsuk's Problem." Jerusalem Combinatorics '93. Papers from the International Conference on Combinatorics held in Jerusalem, May 9-17, 1993 (Ed. H. Barcelo and G. Kalai.) Providence, RI: Amer. Math. Soc., pp. 209-210, 1994.

引用此頁

Eric Weisstein. "Borsuk 猜想。" 來自 Web 資源。 https://mathworld.tw/BorsuksConjecture.html

主題分類