主題
Search

比貝爾巴赫猜想


單葉函式的第 n係數冪級數中應不大於 n。換句話說,如果

 f(z)=a_0+a_1z+a_2z^2+...+a_nz^n+...

共形對映 在任何域上的單位圓盤,且 a_0=0a_1=1,則 |a_n|<=n|a_1|。更專業地說,“幾何極值性蘊含度量極值性”。另一種表述是對於任何 schlicht 函式 f|a_j|<=j (Krantz 1999, p. 150)。

該猜想的前六項已被證明(n=2、3 和 4 的情況分別由 Bieberbach、Lowner 以及 Garabedian 和 Schiffer 完成),已知僅對有限數量的索引為假 (Hayman 1954),並且對於凸域或對稱域為真 (Le Lionnais 1983)。一般情況由 Louis de Branges (1985) 證明。de Branges 證明了 Milin 猜想,該猜想確立了 Robertson 猜想,Robertson 猜想反過來又確立了比貝爾巴赫猜想 (Stewart 1996)。

作者結果
Bieberbach (1916)|a_2|<=2
Löwner (1923)|a_3|<=3
Garabedian and Schiffer (1955)|a_4|<=4
Pederson (1968), Ozawa (1969)|a_6|<=6
Pederson and Schiffer (1972)|a_5|<=5
de Branges (1985)|a_j|<=j 對於所有 j

求和

 sum_(j=k)^n(-1)^(k+j)(2j; j-k)(n+j+1; n-j)e^(-jt)

是 de Branges 證明中的一個重要工具 (Koepf 1998, p. 29)。


另請參閱

Milin 猜想, Robertson 猜想, Schlicht 函式, 單葉函式

使用 探索

參考文獻

Bieberbach, L. "Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln。" Sitzungsber. Preuss. Akad. Wiss., pp. 940-955, 1916.Charzynski, Z. and Schiffer, M. "A New Proof of the Bieberbach Conjecture for the Fourth Coefficient。" Arch. Rational Mech. Anal. 5, 187-193, 1960.de Branges, L. "A Proof of the Bieberbach Conjecture。" Acta Math. 154, 137-152, 1985.Duren, P.; Drasin, D.; Bernstein, A.; and Marden, A. The Bieberbach Conjecture: Proceedings of the Symposium on the Occasion of the Proof. Providence, RI: Amer. Math. Soc., 1986.Garabedian, P. R. "Inequalities for the Fifth Coefficient。" Comm. Pure Appl. Math. 19, 199-214, 1966.Garabedian, P. R.; Ross, G. G.; and Schiffer, M. "On the Bieberbach Conjecture for Even n。" J. Math. Mech. 14, 975-989, 1965.Garabedian, R. and Schiffer, M. "A Proof of the Bieberbach Conjecture for the Fourth Coefficient。" J. Rational Mech. Anal. 4, 427-465, 1955.Gong, S. The Bieberbach Conjecture. Providence, RI: Amer. Math. Soc., 1999.Hayman, W. K. Multivalent Functions, 2nd ed. Cambridge, England: Cambridge University Press, 1994.Hayman, W. K. and Stewart, F. M. "Real Inequalities with Applications to Function Theory。" Proc. Cambridge Phil. Soc. 50, 250-260, 1954.Kazarinoff, N. D. "Special Functions and the Bieberbach Conjecture。" Amer. Math. Monthly 95, 689-696, 1988.Koepf, W. "Hypergeometric Identities。" Ch. 2 in Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, p. 29, 1998.Korevaar, J. "Ludwig Bieberbach's Conjecture and its Proof。" Amer. Math. Monthly 93, 505-513, 1986.Krantz, S. G. "The Bieberbach Conjecture。" §12.1.2 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 149-150, 1999.Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 53, 1983.Löwner, K. "Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I。" Math. Ann. 89, 103-121, 1923.Ozawa, M. "On the Bieberbach Conjecture for the Sixth Coefficient。" Kodai Math. Sem. Rep. 21, 97-128, 1969.Pederson, R. N. "On Unitary Properties of Grunsky's Matrix。" Arch. Rational Mech. Anal. 29, 370-377, 1968.Pederson, R. N. "A Proof of the Bieberbach Conjecture for the Sixth Coefficient。" Arch. Rational Mech. Anal. 31, 331-351, 1968/1969.Pederson, R. and Schiffer, M. "A Proof of the Bieberbach Conjecture for the Fifth Coefficient。" Arch. Rational Mech. Anal. 45, 161-193, 1972.Stewart, I. "The Bieberbach Conjecture。" In From Here to Infinity: A Guide to Today's Mathematics. Oxford, England: Oxford University Press, pp. 164-166, 1996.Weinstein, L. "The Bieberbach Conjecture。" Internat. Math. Res. Not. 5, 61-64, 1991.

請引用本文為

Weisstein, Eric W. "比貝爾巴赫猜想。" 來自 -- 資源。 https://mathworld.tw/BieberbachConjecture.html

主題分類