在 20 世紀 60 年代早期,B. Birch 和 H. P. F. Swinnerton-Dyer 推測,如果給定的橢圓曲線有無限多個解,那麼相關的 -級數在某個固定點的值為 0。1976 年,Coates 和 Wiles 證明了具有複數乘法的橢圓曲線如果擁有無限多個解,則其
-級數在相關的固定點為零(Coates-Wiles 定理),但他們無法證明其逆定理。V. Kolyvagin 將此結果擴充套件到模曲線。
Swinnerton-Dyer 猜想
另請參閱
Coates-Wiles 定理, 橢圓曲線使用 探索
參考文獻
Birch, B. and Swinnerton-Dyer, H. "Notes on Elliptic Curves. II." J. reine angew. Math. 218, 79-108, 1965.Cipra, B. "Fermat Prover Points to Next Challenges." Science 271, 1668-1669, 1996.Clay Mathematics Institute. "The Birch and Swinnerton-Dyer Conjecture." http://www.claymath.org/millennium/Birch_and_Swinnerton-Dyer_Conjecture/.Ireland, K. and Rosen, M. "New Results on the Birch-Swinnerton-Dyer Conjecture." §20.5 in A Classical Introduction to Modern Number Theory, 2nd ed. New York: Springer-Verlag, pp. 353-357, 1990.Mazur, B. and Stevens, G. (Eds.). p-Adic Monodromy and the Birch and Swinnerton-Dyer Conjecture. Providence, RI: Amer. Math. Soc., 1994.Wiles, A. "The Birch and Swinnerton-Dyer Conjecture." http://www.claymath.org/millennium/Birch_and_Swinnerton-Dyer_Conjecture/BSD.pdf.引用為
Weisstein, Eric W. "Swinnerton-Dyer 猜想。" 來自 Web 資源。 https://mathworld.tw/Swinnerton-DyerConjecture.html