主題
Search

對數螺線垂足曲線


LogarithmicSpiralPedal

垂足曲線 是以 對數螺線 為基礎,其引數方程為

f=e^(at)cost
(1)
g=e^(at)sint
(2)

對於位於極點的 垂足點 來說,它是一個相同的 對數螺線

x=((asint+cost)e^(at))/(1+a^2)
(3)
y=((sint-acost)e^(at))/(1+a^2),
(4)

所以

 r=sqrt(x^2+y^2)=(e^(at))/(sqrt(1+a^2)).
(5)

使用 探索

引用為

Weisstein, Eric W. “對數螺線垂足曲線。” 來自 --一個 Wolfram 網路資源。 https://mathworld.tw/LogarithmicSpiralPedalCurve.html

主題分類