區間算術是對位於指定範圍(即區間)內的量進行運算的一種算術,而不是對具有確定已知值的量進行運算。當處理受測量誤差或不確定性影響的資料時,區間算術可能特別有用。它可以被認為是有效數字算術(又名自動精度控制)的嚴格版本。
它功能強大,足以提供嚴格的數學證明(de la Llave 1991, Hutchings et al. 2000, Tucker 2002, Gutowski 2003),但嚴謹性是有代價的。特別是,區間算術可能很慢,並且在實際計算中常常給出過於悲觀的結果。
另請參閱
浮點算術,
區間,
射影擴充套件實數
使用 探索
參考文獻
de la Llave, R. In Computer Aided Proofs in Analysis (Ed. K. Meyer and D. Schmidt). New York: Springer-Verlag, 1991.Marlov, S. M. In Scientific Computing and Validated Numerics (Ed. G. Alefeld; A. Frommer, and B. Lang). Berlin: Akademie Verlag, 1996.Gutowski, M. W. "Power and Beauty of Interval Methods." 20 Feb 2003. http://arxiv.org/abs/physics/0302034.Hutchings, M.; Morgan, F.; Ritoré; M.; and Ros, A. Electron. Res. Announc. Amer. Math. Soc. 6, 45, 2000.Jaulin, L.; Kieffer, M.; Didrit, O.; and Walter, É. Applied Interval Analysis. London: Springer-Verlag, 2003.Kearfott, B. R. Euromath Bull. 2, 95, 1996.Petkovič M. S.; and Petkovič, L. D. Complex Interval Arithmetic and Its Applications. Berlin: Wiley, 1998.Popova, E. D. and Ullrich, C. P. "Simplication of Symbolic-Numerical Interval Expressions." In Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation (Ed. O. Gloor). New York: ACM Press, pp. 207-214, 1998.Schenkel, A.; Wehr, J.; and Wittwer, P. Math. Phys. Electr. J. 6, 2000.Shokin, Y. I. In Scientific Computing and Validated Numerics (Ed. G. Alefeld; A. Frommer, and B. Lang). Berlin: Akademie Verlag, 1996.Trott, M. "Interval Arithmetic." §1.1.2 in The Mathematica GuideBook for Numerics. New York: Springer-Verlag, pp. 54-66, 2006. http://www.mathematicaguidebooks.org/.Tucker, W. Found. Comput. Math. 2, 53, 2002.Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, p. 1168, 2002.在 中被引用
區間算術
引用為
Weisstein, Eric W. "區間算術。" 來自 Web 資源。 https://mathworld.tw/IntervalArithmetic.html
主題分類