主題
Search

Mousetrap


Cayley 發明的排列問題。將數字 1, 2, ..., n 寫在一副牌上,並洗牌。現在,從頂部的牌開始計數。如果選中的牌與計數不相等,則將其移動到牌堆底部並繼續向前計數。如果選中的牌確實與計數相等,則丟棄選中的牌並從 1 重新開始計數。如果所有牌都被丟棄,則遊戲獲勝;如果計數達到 n+1,則遊戲失敗。

n=1, 2, ... 時,卡片的排列方式使得至少一張卡片在正確位置的數量為 1, 1, 4, 15, 76, 455, ... (OEIS A002467)。


使用 探索

參考文獻

Cayley, A. "A Problem in Permutations." Quart. Math. J. 1, 79, 1857.Cayley, A. "On the Game of Mousetrap." Quart. J. Pure Appl. Math. 15, 8-10, 1877.Cayley, A. "A Problem on Arrangements." Proc. Roy. Soc. Edinburgh 9, 338-342, 1878.Cayley, A. "Note on Mr. Muir's Solution of a Problem of Arrangement." Proc. Roy. Soc. Edinburgh 9, 388-391, 1878.Guy, R. K. "Mousetrap." §E37 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 237-238, 1994.Guy, R. K. and Nowakowski, R. J. "Mousetrap." In Combinatorics, Paul Erdős is Eighty, Vol. 1 (Ed. D. Miklós, V. T. Sós, and T. Szőnyi). Budapest: János Bolyai Mathematical Society, pp. 193-206, 1993.Guy, R. K. and Nowakowski, R. J. "Monthly Unsolved Problems, 1696-1995." Amer. Math. Monthly 102, 921-926, 1995.Muir, T. "On Professor Tait's Problem of Arrangement." Proc. Roy. Soc. Edinburgh 9, 382-387, 1878.Muir, T. "Additional Note on a Problem of Arrangement." Proc. Roy. Soc. Edinburgh 11, 187-190, 1882.Mundfrom, D. J. "A Problem in Permutations: The Game of 'Mousetrap.' " European J. Combin. 15, 555-560, 1994.Sloane, N. J. A. Sequences A002467/M3507, A002468/M2945, and A002469/M3962 in "The On-Line Encyclopedia of Integer Sequences."Steen, A. "Some Formulae Respecting the Game of Mousetrap." Quart. J. Pure Appl. Math. 15, 230-241, 1878.Tait, P. G. Scientific Papers, Vol. 1. Cambridge, England: University Press, p. 287, 1898.

在 中被引用

Mousetrap

請引用為

Weisstein, Eric W. "Mousetrap." 來自 —— 資源。 https://mathworld.tw/Mousetrap.html

主題分類