主題
Search

格容差


L=(L, ^ , v ) 為格,並設 tau subset= L^2。那麼 tau 是容差當且僅當它是 L^2 的自反和對稱子格。

格的容差及其相關的極性在有限代數結構的研究中起著重要作用。


此條目由 Matt Insall (作者連結) 貢獻

使用 探索

參考文獻

Bandelt, H. H. "Tolerance Relations on Lattices." Bull. Austral. Math. Soc. 23, 367-381, 1981.Birkhoff, G. Lattice Theory, 3rd ed. Providence, RI: Amer. Math. Soc., 1967.Chajda, I. and Zelinka, B. "Tolerances and Convexity." Czech. Math. J. 29, 584-587, 1979.Chajda, I. and Zelinka, B. "A Characterization of Tolerance-Distributive Tree Semilattices." Czech. Math. J. 37, 175-180, 1987.Grätzer, G. General Lattice Theory, 2nd ed. Boston, MA: Birkhäuser, 1998.Hobby, D. and McKenzie, R. The Structure of Finite Algebras. Providence, RI: Amer. Math. Soc., 1988.Insall, M. "Some Finiteness Conditions in Lattices Using Nonstandard Proof Methods." J. Austral. Math. Soc. 53, 266-280, 1992.Schweigert, D. "Central Relations on Lattices." J. Austral. Math. Soc. 37, 213-219, 1988.Schweigert, D. and Szymanska, M. "On Central Relations of Complete Lattices." Czech. Math. J. 37, 70-74, 1987.

在 中被引用

格容差

請引用為

Insall, Matt. "格容差。" 來自 Web 資源,由 Eric W. Weisstein 建立。 https://mathworld.tw/LatticeTolerance.html

主題分類