設 和
為格,且設
。如果
是單射且滿射,那麼如果它保持並運算,則它是 join-同構。
Join-同構
另請參閱
Join-嵌入, Join-自同態, Join-同態, Meet-同構此條目由 Matt Insall (作者連結) 貢獻
使用 探索
參考文獻
Bandelt, H. H. "Tolerance Relations on Lattices." Bull. Austral. Math. Soc. 23, 367-381, 1981.Birkhoff, G. 格理論,第 3 版 Providence, RI: Amer. Math. Soc., 1967.Chajda, I. and Zelinka, B. "Tolerances and Convexity." Czech. Math. J. 29, 584-587, 1979.Chajda, I. and Zelinka, B. "A Characterization of Tolerance-Distributive Tree Semilattices." Czech. Math. J. 37, 175-180, 1987.Grätzer, G. 通用格理論,第 2 版 Boston, MA: Birkhäuser, 1998.Hobby, D. and McKenzie, R. 有限代數的結構。 Providence, RI: Amer. Math. Soc., 1988.Insall, M. "Some Finiteness Conditions in Lattices Using Nonstandard Proof Methods." J. Austral. Math. Soc. 53, 266-280, 1992.Schweigert, D. "Central Relations on Lattices." J. Austral. Math. Soc. 37, 213-219, 1988.Schweigert, D. and Szymanska, M. "On Central Relations of Complete Lattices." Czech. Math. J. 37, 70-74, 1987.在 中被引用
Join-同構請按如下方式引用
Insall, Matt. "Join-Isomorphism." 來自 網路資源,由 Eric W. Weisstein 建立。 https://mathworld.tw/Join-Isomorphism.html