主題
Search

組合子


1920 年 12 月,M. Schönfinkel 在提交給哥廷根數學學會的報告中,提出了一種新型的形式邏輯,該邏輯基於廣義函式的概念,其引數也是函式 (Schönfinkel 1924)。 這一數學學科隨後被 Curry 稱為組合邏輯,被 Church 稱為 “lambda-轉換” 或 “lambda-演算”。 組合子可用於代數、拓撲學和範疇論的研究,並在演算法語言的程式研究中得到應用。


另請參閱

組合邏輯, Lambda 演算

使用 探索

參考文獻

Barendregt, H. P. The Lambda Calculus. Amsterdam, Netherlands: North-Holland, 1981.Curry, H. B. Foundations of Mathematical Logic. New York: Dover, pp. 118-119, 1977.Curry, H. and Feys, R. Combinatory Logic, Vol. 1. Amsterdam, Netherlands: North-Holland, 1958.Hindley, J. R.; Lercher, B.; Seldin, J. P. Introduction to Combinatory Logic. London: Cambridge University Press, 1972.Hindley, J. R. and Seldin, J. P. Introduction to Combinators and lambda-Calculus. Cambridge, England: Cambridge University Press, 1986.Holmes, M. R. "Systems of Combinatory Logic Related to Quine's 'New Foundations.' " Annals Pure Appl. Logic 53, 103-133, 1991.Quine, W. V. "New Foundations for Mathematical Logic." Amer. Math. Monthly 44, 70-80, 1937.Révész, G. E. Lambda-Calculus, Combinators, and Functional Programming. Cambridge, England: Cambridge University Press, 1988.Seldin, J. P. and Hindley, J. R. (Eds.). To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. New York: Academic Press, 1980.Smullyan, R. To Mock a Mockingbird and Other Logic Puzzles: Including an Amazing Adventure in Combinatory Logic. New York: Knopf, 1985.Statman, R. "The Word Problem for Smullyan's Lark Combinator Is Decidable." J. Symb. Comput. 7, 103-112, 1989.Schönfinkel, M. "Über die Bausteine der mathematischen Logik." Math. Ann. 92, 305-316, 1924.Schönfinkel, M. "Sur les éléments de construction de la logique mathématique." Math. Inform. Sci. Humaines, No. 112, 5-26 and 59, 1990. [French translation with commentary.]Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, pp. 711-714 and 1121-1123, 2002.Wolfram, S. "Combinators: A Centennial View." Dec. 6, 2020. https://writings.stephenwolfram.com/2020/12/combinators-a-centennial-view/.Wolfram, S. Combinators: A Centennial View. Champaign IL: Wolfram Media, 2021.

在 中引用

組合子

請引用為

Weisstein, Eric W. “組合子。” 來自 —— 資源。 https://mathworld.tw/Combinator.html

主題分類