主題
Search

Carlson 橢圓積分


Carlson 橢圓積分,也稱為 Carlson 對稱形式,是一組標準的規範橢圓積分,它為勒讓德第一、第二和第三類橢圓積分提供了方便的替代方案。 Carlson 橢圓積分和勒讓德橢圓積分可以相互轉換。

Carlson 橢圓積分定義為

R_C(x,y)=R_F(x,y,y)
(1)
=1/2int_0^infty(dt)/((t+y)sqrt(t+x))
(2)
R_D(x,y,z)=R_J(x,y,z,z)
(3)
=3/2int_0^infty(dt)/(sqrt(t+x)sqrt(t+y)(t+z)^(3/2))
(4)
R_E(x,y)=1/piint_0^infty(x/(t+x)+y/(t+y))(sqrt(t)dt)/(sqrt(t+x)sqrt(t+y))
(5)
R_F(x,y,z)=1/2int_0^infty(dt)/(sqrt(t+x)sqrt(t+y)sqrt(t+z))
(6)
R_G(x,y,z)=1/4int_0^infty((xt)/(t+x)+(yt)/(t+y)+(zt)/(t+z))(dt)/(sqrt(t+x)sqrt(t+y)sqrt(t+z))
(7)
R_J(x,y,z,p)=3/2int_0^infty(dt)/((t+p)sqrt(t+x)sqrt(t+y)sqrt(t+z))
(8)
R_K(x,y)=1/piint_0^infty(dt)/(sqrt(t)sqrt(t+x)sqrt(t+y))
(9)
R_M(x,y,p)=2/piint_0^infty(dt)/((t+p)sqrt(t+x)sqrt(t+y)).
(10)

它們在 Wolfram 語言 中實現為CarlsonRC[x, y],CarlsonRD[x, y, z],CarlsonRE[x, y],CarlsonRF[x, y, z],CarlsonRG[x, y, z],CarlsonRJ[x, y, z, rho],CarlsonRK[x, y], 和CarlsonRM[x, y, rho].

對於 0<=phi<=2pi0<=k^2sin^2phi<=1,第一、第二和第三類不完全橢圓積分透過以下方式與 Carlson 橢圓積分相關

F(phi,k)=sinphiR_F(cos^2phi,1-k^2sin^2phi,1)
(11)
E(phi,k)=sinphiR_F(cos^2phi,1-k^2sin^2phi,1)-1/3k^2sin^3phiR_D(cos^2phi,1-k^2sin^2phi,1)
(12)
Pi(phi,n,k)=sinphiR_F(cos^2phi,1-k^2sin^2phi,1)+1/3nsin^3phiR_J(cos^2phi,1-k^2sin^2phi,1,1-nsin^2phi).
(13)

透過將 phi=pi/2 代入上述公式,用不完全 Carlson 積分表示完全勒讓德-雅可比積分,得到

K(k)=R_F(0,1-k^2,1)
(14)
E(k)=R_F(0,1-k^2,1)-1/3k^2R_D(0,1-k^2,1)
(15)
Pi(n,k)=R_F(0,1-k^2,1)+1/3nR_J(0,1-k^2,1,1-n)
(16)

(Press 和 Teukolsky 1990)和

K(k)=1/2piR_K(1,1-k^2)
(17)
E(k)=1/2piR_E(1,1-k^2)
(18)
Pi(n,k)=1/2piR_K(1,1-k^2)+1/4npiR_M(1,1-k^2,1-n).
(19)

這些函式也滿足以下齊次性

R_F(kappax,kappay,kappaz)=kappa^(-1/2)R_F(x,y,z)
(20)
R_J(kappax,kappay,kappaz,kappap)=kappa^(-3/2)R_J(x,y,z,p)
(21)

(Press 和 Teukolsky 1990)。

特殊值包括

R_D(0,2,1)=(3pi)/L
(22)
R_F(0,1,2)=L/2
(23)
R_K(1,2)=L/pi,
(24)

其中 L雙紐線常數


另請參閱

橢圓積分

使用 探索

參考文獻

Carlson, B. C. Special Functions of Applied Mathematics. New York: Academic Press, 1977.Carlson, B. C. "Elliptic Integrals of the First Kind." SIAM J. Math. Anal. 8, 231-242, 1977.Carlson, B. C. "A Table of Elliptic Integrals of the Second Kind." Math. Comput. 49, 595-606, 1987.Carlson, B. C. "A Table of Elliptic Integrals of the Third Kind." Math. Comput. 51, 267-280, 1988.Carlson, B. C. "Numerical Computation of Real or Complex Elliptic Integrals." Numer. Algorithms 10, 13-26, 1995.Carlson, B. C. "Elliptic Integrals." Ch. 19 in Digital Library of Mathematical Functions. 2020-12-15. https://dlmf.nist.gov/19.Press, W. H. and Teukolsky, S. A. "Elliptic Integrals." Computers in Physics 4, 92-98, 1990.

請引用為

Weisstein, Eric W. “Carlson 橢圓積分。” 來自 Web 資源。 https://mathworld.tw/CarlsonEllipticIntegrals.html

主題分類